Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory

被引:164
作者
Tama, F [1 ]
Wriggers, W [1 ]
Brooks, CL [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
elastic normal modes; vector quantization; codebook vectors; electron microscopy; conformational change;
D O I
10.1016/S0022-2836(02)00627-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A theory of elastic normal modes is described for the exploration of global distortions of biological structures and their assemblies based upon low-resolution image data. Structural information at low resolution, e.g. from density maps measured by cryogenic electron microscopy (cryo-EM), is used to construct discrete multi-resolution models for the electron density using the techniques of vector quantization. The elastic normal modes computed based on these discretized low-resolution models are found to compare well with the normal modes obtained at atomic resolution. The quality of the normal modes describing global displacements of the molecular system is found to depend on the resolution of the synthetic EM data and the extent of reductionism in the discretized representation. However, models that reproduce the functional rearrangements of our test set of molecules are achieved for realistic values of experimental resolution. Thus large conformational changes as occur during the functioning of biological macromolecules and assemblies can be elucidated directly from low-resolution structural data through the application of elastic normal mode theory and vector quantization. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 38 条
[1]   EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome [J].
Agrawal, RK ;
Heagle, AB ;
Penczek, P ;
Grassucci, RA ;
Frank, J .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (07) :643-647
[2]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[4]   NORMAL-MODES FOR SPECIFIC MOTIONS OF MACROMOLECULES - APPLICATION TO THE HINGE-BENDING MODE OF LYSOZYME [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :4995-4999
[5]   HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21) :6571-6575
[6]   High-resolution electron cryomicroscopy of macromolecular assemblies [J].
Chiu, W ;
McGough, A ;
Sherman, MB ;
Schmid, MF .
TRENDS IN CELL BIOLOGY, 1999, 9 (04) :154-159
[7]   Dynamics of large proteins through hierarchical levels of coarse-grained structures [J].
Doruker, P ;
Jernigan, RL ;
Bahar, I .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (01) :119-127
[8]   NEW APPROACH FOR DETERMINING LOW-FREQUENCY NORMAL-MODES IN MACROMOLECULES [J].
DURAND, P ;
TRINQUIER, G ;
SANEJOUAND, YH .
BIOPOLYMERS, 1994, 34 (06) :759-771
[9]   A ratchet-like inter-subunit reorganization of the ribosome during translocation [J].
Frank, J ;
Agrawal, RK .
NATURE, 2000, 406 (6793) :318-322
[10]   Cryo-electron microscopy as an investigative tool: the ribosome as an example [J].
Frank, J .
BIOESSAYS, 2001, 23 (08) :725-732