Spline approximation of explicit surfaces containing irregularities

被引:9
作者
Arcangeli, R
Manzanilla, R
Torrens, JJ
机构
[1] INTEVEP SA, CARACAS 1070A, VENEZUELA
[2] UNIV PUBL NAVARRA, DEPT MATEMAT & INFORMAT, PAMPLONA 31006, SPAIN
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1997年 / 31卷 / 05期
关键词
D O I
10.1051/m2an/1997310506431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of approximation of a non regular a functions, i.e. functions which are discontinuous or which have some discontinuous derivatives on a subset F of an open, bounded set Omega in R-n, and that belong to the Sobolev space H-m(Omega\(F) over bar) for some integer m > n/2. The question is to construct, from Lagrange of 1(st) order Hermite data of a non regular function f, an approximant of f of class C-k on Omega\(F) over bar with k = 1 or 2. The standard example of this situation is the modelling of geological surfaces (cf J. Springer [24]). The answer we provide to the problem of approximation of non regular functions is obtained by adapting the theory of D-m-splines over a bounded open set in R-n. We first define the D-m-splines over Omega' = Omega\(F) over bar and then, introducing a suitable finite element space, the ''discrete D-m-splines over Omega''' : these are the functions we propose for the approximation of non regular functions. Finally, we study the convergence of the discrete smoothing D-m-splines over Omega' and we give some numerical results.
引用
收藏
页码:643 / 676
页数:34
相关论文
共 28 条
  • [1] Adams R. A., 1975, SOBOLEV SPACES
  • [2] APPRATO D, 1987, APPROXIMATION SURFAC
  • [3] ARCANGELI R, 1976, REV FR AUTOMAT INFOR, V10, P5
  • [4] Arcangeli R., 1989, Mathematical Methods in Computer Aided Geometric Design, P35
  • [5] ARCANGELI R, 1986, PUBLICATION UA, V1204
  • [6] Arge E., 1994, NUMER ALGORITHMS, V8, P149, DOI [10.1007/BF02142688, DOI 10.1007/BF02142688]
  • [7] SO-CALLED SPLINE FUNCTIONS DEFINED ON A CONVEX SET
    ATTEIA, M
    [J]. NUMERISCHE MATHEMATIK, 1968, 12 (03) : 192 - &
  • [8] BERNADOU M, 1978, THESIS U PARIS 4
  • [9] Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
  • [10] CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77