Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio

被引:238
作者
Ussiri, David A. N. [1 ]
Lal, Rattan [1 ]
Jarecki, Marek K. [1 ]
机构
[1] Ohio State Univ, Carbon Management & Sequestrat Ctr, Sch Environm & Nat Resources, Columbus, OH 43210 USA
关键词
Carbon sequestration; Greenhouse gases; Gaseous flux; No-till; Conventional till; Chisel till; Soil temperature; Global warming potential; SOYBEAN-ALFALFA ROTATIONS; CARBON-DIOXIDE; SOIL CARBON; NO-TILLAGE; GREENHOUSE GASES; OXIDATION RATES; ORGANIC-MATTER; N2O FLUXES; LAND-USE; MANAGEMENT;
D O I
10.1016/j.still.2009.03.001
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (rho(b)) and increased total N concentration of the 0-15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m(-2) d(-1) and 1.82 kg N ha(-1) year(-1)) and CT (0.74 mg m(-2) d(-1) and 1.96 kg N ha(-1) year(-1)) than NT (0.29 mg m(-2) d(-1) and 0.94 kg N ha(-1) year(-1)). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha(-1) year(-1), while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha(-1) year(-1), respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface rho(b), suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 71 条
[1]  
[Anonymous], 2007, CLIMATE CHANGE 2007
[2]  
[Anonymous], 1997, 3 IPCC
[3]  
Baggs EM, 2000, SOIL USE MANAGE, V16, P82, DOI 10.1111/j.1475-2743.2000.tb00179.x
[4]   Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage [J].
Baggs, EM ;
Stevenson, M ;
Pihlatie, M ;
Regar, A ;
Cook, H ;
Cadisch, G .
PLANT AND SOIL, 2003, 254 (02) :361-370
[5]   Relationship of soil organic matter dynamics to physical protection and tillage [J].
Balesdent, J ;
Chenu, C ;
Balabane, M .
SOIL & TILLAGE RESEARCH, 2000, 53 (3-4) :215-230
[6]   The influence of gas transport and porosity on methane oxidation in soils [J].
Ball, BC ;
Dobbie, KE ;
Parker, JP ;
Smith, KA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D19) :23301-23308
[7]   Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland [J].
Ball, BC ;
Scott, A ;
Parker, JP .
SOIL & TILLAGE RESEARCH, 1999, 53 (01) :29-39
[8]  
BORN M, 1994, TELLUS B, V42, P2
[9]  
BRONSON KF, 1993, ASA SPEC P, V55, P133
[10]   PROFILE NITROUS-OXIDE AND CARBON-DIOXIDE CONCENTRATIONS IN A SOIL SUBJECT TO FREEZING [J].
BURTON, DL ;
BEAUCHAMP, EG .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (01) :115-122