Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286

被引:83
作者
Germain, D
Russell, A
Thompson, A
Hendley, J
机构
[1] Peter MacCallum Canc Inst, E Melbourne, Vic 3002, Australia
[2] Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic 3002, Australia
关键词
D O I
10.1074/jbc.275.16.12074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin D1 binds and regulates the activity of cyclin-dependent kinases (CDKs) 4 and 6. Phosphorylation of the retinoblastoma protein by cyclin D1-CDK4/6 complexes during the G(1) phase of the cell cycle promotes entry into S phase. Cyclin D1 protein is ubiquitinated and degraded by the 26 S proteasome, Previous studies have demonstrated that cyclin D1 ubiquitination is dependent on its phosphorylation by glycogen synthase kinase 3 beta (GSK-3 beta) on threonine 286 and that this phosphorylation event is greatly enhanced by binding to CDK4 (Diehl, J. A., Cheng, M. G., Roussel, M. F., and Sherr, C. J. (1998) Genes Dev. 12, 3499-3511). We now report an additional pathway for the ubiquitination of free cyclin D1 (unbound to CDKs). We show that, when unbound to CDK4, a cyclin D1-T286A mutant is ubiquitinated. Further, we show that a mutant of cyclin D1 that cannot bind to CDK4 (cyclin D1-KE) is also ubiquitinated in vivo. Our results demonstrate that free cyclin D1 is ubiquitinated independently of its phosphorylation on threonine 286 by GSK-3 beta, suggesting that, as has been shown for cyclin E, distinct pathways of ubiquitination lead to the degradation of free and CDK-bound cyclin D1. The pathway responsible for ubiquitination of free cyclin D1 may be important in limiting the effects of cyclin DI overexpression in a variety of cancers.
引用
收藏
页码:12074 / 12079
页数:6
相关论文
共 31 条
[1]   Cyclin D1 associates with the TBP-associated factor TAFII250 to regulate Sp1-mediated transcription [J].
Adnane, J ;
Shao, ZH ;
Robbins, PD .
ONCOGENE, 1999, 18 (01) :239-247
[2]   REGULATION OF G(1)/S TRANSITION BY CYCLIN-D2 AND CYCLIN-D3 IN HEMATOPOIETIC-CELLS [J].
ANDO, K ;
AJCHENBAUMCYMBALISTA, F ;
GRIFFIN, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9571-9575
[3]   G(1) CYCLIN TURNOVER AND NUTRIENT-UPTAKE ARE CONTROLLED BY A COMMON PATHWAY IN YEAST [J].
BARRAL, Y ;
JENTSCH, S ;
MANN, C .
GENES & DEVELOPMENT, 1995, 9 (04) :399-409
[4]  
BATES S, 1994, ONCOGENE, V9, P1633
[5]   The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction [J].
Craig, KL ;
Tyers, M .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 72 (03) :299-328
[6]   Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E [J].
Dealy, MJ ;
Nguyen, KVT ;
Lo, J ;
Gstaiger, M ;
Krek, W ;
Elson, D ;
Arbeit, J ;
Kipreos, ET ;
Johnson, RS .
NATURE GENETICS, 1999, 23 (02) :245-248
[7]   Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintin-proteasome pathway [J].
Diehl, JA ;
Zindy, F ;
Sherr, CJ .
GENES & DEVELOPMENT, 1997, 11 (08) :957-972
[8]   Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization [J].
Diehl, JA ;
Cheng, MG ;
Roussel, MF ;
Sherr, CJ .
GENES & DEVELOPMENT, 1998, 12 (22) :3499-3511
[9]   D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain [J].
Ganter, B ;
Fu, SL ;
Lipsick, JS .
EMBO JOURNAL, 1998, 17 (01) :255-268
[10]  
GILLETT C, 1994, CANCER RES, V54, P1812