Decomposing spatiotemporal brain patterns into topographic latent sources

被引:9
作者
Gershman, Samuel J. [1 ]
Blei, David M. [2 ]
Norman, Kenneth A. [3 ,4 ]
Sederberg, Per B. [5 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Psychol, Princeton, NJ 08540 USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08540 USA
[5] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
fMRI; Bayesian; Decoding; Variational; Multivariate; EEG; CLASSIFICATION; FRAMEWORK; INFERENCE; MODELS;
D O I
10.1016/j.neuroimage.2014.04.055
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper extends earlier work on spatial modeling of fMRI data to the temporal domain, providing a framework for analyzing high temporal resolution brain imaging modalities such as electroencapholography (EEG). The central idea is to decompose brain imaging data into a covariate-dependent superposition of functions defined over continuous time and space (what we refer to as topographic latent sources). The continuous formulation allows us to parametrically model spatiotemporally localized activations. To make group-level inferences, we elaborate the model hierarchically by sharing sources across subjects. We describe a variational algorithm for parameter estimation that scales efficiently to large data sets. Applied to three EEG data sets, we find that the model produces good predictive performance and reproduces a number of classic findings. Our results suggest that topographic latent sources serve as an effective hypothesis space for interpreting spatiotemporal brain imaging data. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 32 条
  • [1] [Anonymous], PLOS ONE IN PRESS
  • [2] [Anonymous], P 29 INT C MACH LEAR
  • [3] [Anonymous], PSYCHOPHYSIOLOGY
  • [4] [Anonymous], 2004, Springer Texts in Statistics
  • [5] [Anonymous], NEUR NETW 2004 P 200
  • [6] [Anonymous], INT C ART INT STAT
  • [7] Attias H, 2000, ADV NEUR IN, V12, P209
  • [8] Single-trial analysis and classification of ERP components - A tutorial
    Blankertz, Benjamin
    Lemm, Steven
    Treder, Matthias
    Haufe, Stefan
    Mueller, Klaus-Robert
    [J]. NEUROIMAGE, 2011, 56 (02) : 814 - 825
  • [9] Variational Inference for Large-Scale Models of Discrete Choice
    Braun, Michael
    McAuliffe, Jon
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 324 - 335
  • [10] Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis
    Castellanos, Nazareth P.
    Makarov, Valeri A.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2006, 158 (02) : 300 - 312