Gaussian spectral rules for the three-point second differences: I. A two-point positive definite problem in a semi-infinite domain

被引:33
作者
Druskin, V
Knizhnerman, L
机构
[1] Schlumberger Doll Res Ctr, Ridgefield, CT 06877 USA
[2] Cent Geophys Expedit, Moscow 123298, Russia
关键词
finite differences; exponential convergence; Neumann-to-Dirichlet map; Pade-Chebyshev approximation; elliptic equations;
D O I
10.1137/S0036142997330792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We suggest an approach to grid optimization for a second order finite-difference scheme for elliptic equations. A model problem corresponding to the three-point finite-difference semidiscretization of the Laplace equation on a semi-infinite strip is considered. We relate the approximate boundary Neumann-to-Dirichlet map to a rational function and calculate steps of our finite-difference grid using the Pade-Chebyshev approximation of the inverse square root. It increases the convergence order of the Neumann-to-Dirichlet map from second to exponential without increasing the stencil of the finite-difference scheme and losing stability.
引用
收藏
页码:403 / 422
页数:20
相关论文
共 28 条
[1]  
Baker G., 1996, Pade Approximants
[2]   Perfectly matched layer for the FDTD solution of wave-structure interaction problems [J].
Berenger, JP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (01) :110-117
[3]   A 3D PERFECTLY MATCHED MEDIUM FROM MODIFIED MAXWELLS EQUATIONS WITH STRETCHED COORDINATES [J].
CHEW, WC ;
WEEDON, WH .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (13) :599-604
[4]   The perfectly matched layer in curvilinear coordinates [J].
Collino, F ;
Monk, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :2061-2090
[5]   Extended Krylov subspaces: Approximation of the matrix square root and related functions [J].
Druskin, V ;
Knizhnerman, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (03) :755-771
[6]  
DRUSKIN V, 1998, P COPP MOUNT C IT ME, V2
[7]  
DRUSKIN V, UNPUB APPLICATIONS, V2
[8]  
Druskin V., 1997, EMG0029722 SCHLUMB D
[9]  
Fornberg B., 1996, A Practical Guide to Pseudospectral Methods
[10]  
FREUD G, 1976, ORTHOGONAL POLYNOMIA