Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications

被引:86
作者
Liu, Jing [1 ,2 ]
Wang, Jiawei [1 ]
Yan, Xuedong [1 ]
Zhang, Xianfa [1 ]
Yang, Guiling [1 ]
Jalbout, Abraham F. [3 ]
Wang, Rongshun [1 ,2 ]
机构
[1] NE Normal Univ, Dept Chem, Inst Funct Mat, Changchun 130024, Jilin, Peoples R China
[2] Mat Sci & Technol Ctr, LIB Engn Lab, Changchun 130024, Jilin, Peoples R China
[3] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico
关键词
Lithium-ion batteries; LiFePO4/carbon composite; Long-term cyclability; High-rate performance; Large-scale application; ELECTROCHEMICAL PERFORMANCE; PHOSPHO-OLIVINES; ROOM-TEMPERATURE; LIXFEPO4; SURFACE;
D O I
10.1016/j.electacta.2009.05.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simple high-energy ball milling combined with spray-drying method has been developed to synthesize LiFePO4/carbon composite. This material delivers an improved tap density of 1.3 g/cm(3) and a high electronic conductivity of 10(-2) to 10(-3) S/cm. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. The discharge capacities are as high as 109 mAh/g at the current density of 1100 mA/g (about 6.5C rate) and 94 mAh/g at the current density of 1900 mA/g (about 11 C rate). At the high current density of 1700 mA/g (10C rate), it exhibits a long-term cyclability, retaining over 92% of its original discharge capacity beyond 2400 cycles. Therefore, the as-prepared LiFePO4/carbon composite cathode material is capable of such large-scale applications as hybrid and plug-in hybrid electric vehicles. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5656 / 5659
页数:4
相关论文
共 20 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[5]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[6]   Small polaron hopping in LixFePO4 solid solutions:: Coupled lithium-ion and electron mobility [J].
Ellis, Brian ;
Perry, Laura K. ;
Ryan, Dominic H. ;
Nazar, L. F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (35) :11416-11422
[7]   Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].
Gibot, Pierre ;
Casas-Cabanas, Montse ;
Laffont, Lydia ;
Levasseur, Stephane ;
Carlach, Philippe ;
Hamelet, Stephane ;
Tarascon, Jean-Marie ;
Masquelier, Christian .
NATURE MATERIALS, 2008, 7 (09) :741-747
[8]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[9]   Surface studies of carbon films from pyrolyzed photoresist [J].
Kostecki, R ;
Schnyder, B ;
Alliata, D ;
Song, X ;
Kinoshita, K ;
Kötz, R .
THIN SOLID FILMS, 2001, 396 (1-2) :36-43
[10]   Experimental visualization of lithium diffusion in LixFePO4 [J].
Nishimura, Shin-ichi ;
Kobayashi, Genki ;
Ohoyama, Kenji ;
Kanno, Ryoji ;
Yashima, Masatomo ;
Yamada, Atsuo .
NATURE MATERIALS, 2008, 7 (09) :707-711