A xylanase, AtXyn1, is predominantly expressed in vascular bundles, and four putative xylanase genes were identified in the Arabidopsis thaliana genome

被引:47
作者
Suzuki, M
Kato, A
Nagata, N
Komeda, Y
机构
[1] Hokkaido Univ, Grad Sch Sci, Div Biol Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan
[2] RIKEN, Inst Phys & Chem Res, Plant Sci Ctr, Wako, Saitama 3510198, Japan
关键词
Arabidopsis thaliana; cDNA; secondary cell wall; vascular bundles; xylanase (EC 3.2.1.8);
D O I
10.1093/pcp/pcf088
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The cDNA clone RXF12, which encodes a xylanase (EC 3.2.1.8), was isolated from Arabidopsis thaliana. The C-terminal half of the amino acid sequence of the deduced protein, named AtXyn1, showed similarity with the catalytic domain of barley xylanase X-1. The N-terminal half of AtXyn1 also contained three regions with sequences similar to cellulose-binding domains (CBDs). A xylanase assay revealed that transgenic A. thaliana plants expressing exogenous AtXyn1 fused with enhanced green fluorescent protein (EGFP) possessed approximately twice as much xylanase activity as wild-type plants. Observation by fluorescence microscopy of transgenic A. thaliana plants expressing a fusion protein of AtXyn1 and EGFP suggested that AtXyn1 is a cell wall protein. Analysis of the localization of beta-glucuronidase (GUS) activity in transgenic A thaliana plants containing a chimeric gene with the upstream sequence of the AtXyn1 gene and the GUS gene demonstrated that the AtXyn1 gene is predominantly expressed in vascular bundles, but not in vessel cells. These data suggest that AtXyn1 is involved in the secondary cell wall metabolism of vascular bundle cells. A database search revealed that four putative xylanase genes exist in the A. thaliana genome, besides the AtXyn1 gene. Of these, two also contain several regions with sequences similar to CBDs in their N-terminal regions. Comparison of the amino acid sequences of the five xylanases suggests a possible process for their molecular evolution.
引用
收藏
页码:759 / 767
页数:9
相关论文
共 33 条
[1]   Structure, hormonal regulation, and chromosomal location of genes encoding barley (1->4)-beta-xylan endohydrolases [J].
Banik, M ;
Li, CD ;
Langridge, P ;
Fincher, GB .
MOLECULAR AND GENERAL GENETICS, 1997, 253 (05) :599-608
[2]   Molecular cloning of cDNAs encoding (1->4)-beta-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare) [J].
Banik, M ;
Garrett, TPJ ;
Fincher, GB .
PLANT MOLECULAR BIOLOGY, 1996, 31 (06) :1163-1172
[3]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[4]   The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana [J].
Baumberger, N ;
Ringli, C ;
Keller, B .
GENES & DEVELOPMENT, 2001, 15 (09) :1128-1139
[5]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[6]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[7]   SOLUBLE CHROMOGENIC SUBSTRATES FOR THE ASSAY OF ENDO-1,4-BETA-XYLANASES AND ENDO-1,4-BETA-GLUCANASES [J].
BIELY, P ;
MISLOVICOVA, D ;
TOMAN, R .
ANALYTICAL BIOCHEMISTRY, 1985, 144 (01) :142-146
[8]   The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5′ leader [J].
Bih, FY ;
Wu, SSH ;
Ratnayake, C ;
Walling, LL ;
Nothnagel, EA ;
Huang, AHC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22884-22894
[9]   Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Theodorou, MK ;
Morris, P ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1996, 319 :515-520
[10]   Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters [J].
Blee, KA ;
Wheatley, ER ;
Bonham, VA ;
Mitchell, GP ;
Robertson, D ;
Slabas, AR ;
Burrell, MM ;
Wojtaszek, P ;
Bolwell, GP .
PLANTA, 2001, 212 (03) :404-415