Estimating deterministic trends with an integrated or stationary noise component

被引:117
作者
Perron, Pierre [1 ]
Yabu, Tomoyoshi [2 ]
机构
[1] Boston Univ, Dept Econ, Boston, MA 02215 USA
[2] Keio Univ, Fac Business & Commerce, Tokyo 1088345, Japan
基金
美国国家科学基金会;
关键词
Linear trend; Unit root; Median-unbiased estimates; GLS procedure; Super efficient estimates; MEDIAN-UNBIASED ESTIMATION; MACROECONOMIC TIME-SERIES; AUTOREGRESSIVE UNIT-ROOT; RANDOM-WALKS; HYPOTHESIS; MODELS; ROBUST; TESTS; ORDER; SIZE;
D O I
10.1016/j.jeconom.2009.03.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a test for the slope of a trend function when it is a priori unknown whether the series is trend-stationary or contains an autoregressive unit root. The procedure is based on a Feasible Quasi Generalized Least Squares method from an AR(1) specification with parameter alpha, the sum of the autoregressive coefficients. The estimate of a is the OLS estimate obtained from an autoregression applied to detrended data and is truncated to take a value 1 whenever the estimate is in a T(-delta) neighborhood of 1. This makes the estimate "super-efficient" when alpha = 1 and implies that inference on the slope parameter can be performed using the standard Normal distribution whether alpha = I or vertical bar alpha vertical bar < 1. Theoretical arguments and simulation evidence show that delta = 1/2 is the appropriate choice. Simulations show that our procedure has better size and power properties than the tests proposed by [Bunzel, H., Vogelsang, T.J., 2005. Powerful trend function tests that are robust to strong serial correlation with an application to the Prebish-Singer hypothesis. journal of Business and Economic Statistics 23, 381-394] and [Harvey. D.I., Leybourne, S.J., Taylor, A.M.R., 2007. A simple, robust and powerful test of the trend hypothesis. Journal of Econometrics 141,1302-1330]. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 69
页数:14
相关论文
共 29 条
[1]   APPROXIMATELY MEDIAN-UNBIASED ESTIMATION OF AUTOREGRESSIVE MODELS [J].
ANDREWS, DWK ;
CHEN, HY .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1994, 12 (02) :187-204
[2]   EXACTLY MEDIAN-UNBIASED ESTIMATION OF 1ST ORDER AUTOREGRESSIVE UNIT-ROOT MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1993, 61 (01) :139-165
[3]  
[Anonymous], 1988, CAE Working Paper No. 88-23
[4]   CONSISTENT AUTOREGRESSIVE SPECTRAL ESTIMATES [J].
BERK, KN .
ANNALS OF STATISTICS, 1974, 2 (03) :489-502
[5]   Powerful trend function tests that are robust to strong serial correlation, with an application to the prebisch-singer hypothesis [J].
Bunzel, H ;
Vogelsang, TI .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2005, 23 (04) :381-394
[6]   Estimating deterministic trends in the presence of serially correlated errors [J].
Canjels, E ;
Watson, MW .
REVIEW OF ECONOMICS AND STATISTICS, 1997, 79 (02) :184-200
[7]   INTEGRATION VERSUS TREND STATIONARITY IN TIME-SERIES [J].
DEJONG, DN ;
NANKERVIS, JC ;
SAVIN, NE ;
WHITEMAN, CH .
ECONOMETRICA, 1992, 60 (02) :423-433
[8]   TRENDS VERSUS RANDOM-WALKS IN TIME-SERIES ANALYSIS [J].
DURLAUF, SN ;
PHILLIPS, PCB .
ECONOMETRICA, 1988, 56 (06) :1333-1354
[9]   Efficient tests for an autoregressive unit root [J].
Elliott, G ;
Rothenberg, TJ ;
Stock, JH .
ECONOMETRICA, 1996, 64 (04) :813-836
[10]  
Fomby TB, 2002, J CLIMATE, V15, P117, DOI 10.1175/1520-0442(2002)015<0117:TAOSRT>2.0.CO