Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics

被引:116
作者
Deml, Ann M. [1 ,2 ]
Stevanovic, Vladan [3 ,4 ]
Muhich, Christopher L. [2 ]
Musgrave, Charles B. [2 ,5 ]
O'Hayre, Ryan [1 ]
机构
[1] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA
[3] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
[5] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; NEUTRON-DIFFRACTION; SEEBECK COEFFICIENT; DEFECT EQUILIBRIUM; DESIGN PRINCIPLES; NONSTOICHIOMETRY; PEROVSKITES; SR; REDUCTION;
D O I
10.1039/c3ee43874k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the fundamental role oxygen vacancy formation energies play in a broad range of important energy applications, their relationships with the intrinsic bulk properties of solid oxides remain elusive. Our study of oxygen vacancy formation in La1-xSrxBO3 perovskites (B=Cr, Mn, Fe, Co, and Ni) conducted using modern, electronic structure theory and solid-state defect models demonstrates that a combination of two fundamental and intrinsic materials properties, the oxide enthalpy of formation and the minimum band gap energy, accurately correlate with oxygen vacancy formation energies. The energy to form a single, neutral oxygen vacancy decreases with both the oxide enthalpy of formation and the band gap energy in agreement with the relation of the former to metal-oxygen bond strengths and of the latter to the energy of the oxygen vacancy electron density redistribution. These findings extend our understanding of the nature of oxygen vacancy formation in complex oxides and provide a fundamental method for predicting oxygen vacancy formation energies using purely intrinsic bulk properties.
引用
收藏
页码:1996 / 2004
页数:9
相关论文
共 60 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]  
[Anonymous], 1982, J PHYS CHEM REF DATA
[3]   VARIATION OF OPTICAL GAPS IN PEROVSKITE-TYPE 3D TRANSITION-METAL OXIDES [J].
ARIMA, T ;
TOKURA, Y ;
TORRANCE, JB .
PHYSICAL REVIEW B, 1993, 48 (23) :17006-17009
[4]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[5]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Trends in Stability of Perovskite Oxides [J].
Calle-Vallejo, Federico ;
Martinez, Jose I. ;
Garcia-Lastra, Juan M. ;
Mogensen, Mogens ;
Rossmeisl, Jan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (42) :7699-7701
[8]   Energetics of La1-xAxCrO3-δ perovskites (A = Ca or Sr) [J].
Cheng, JH ;
Navrotsky, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (01) :234-244
[9]   Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In) [J].
Cheng, JH ;
Navrotsky, A .
JOURNAL OF MATERIALS RESEARCH, 2003, 18 (10) :2501-2508
[10]   Thermochemistry of La1-xSrxFeO3-δ solid solutions (0.0 ≤ x ≤ 1.0, 0.0 ≤ δ ≤ 0.5) [J].
Cheng, JJ ;
Navrotsky, A ;
Zhou, XD ;
Anderson, HU .
CHEMISTRY OF MATERIALS, 2005, 17 (08) :2197-2207