Death substrates came alive

被引:162
作者
Porter, AG
Ng, P
Janicke, RU
机构
[1] Inst. of Molecular and Cell Biology, National University of Singapore, Singapore 119260
关键词
D O I
10.1002/bies.950190609
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Interleukin 1 beta-converting enzyme (ICE)-like proteases (caspases) play an important role in programmed cell death (apoptosis), and elucidating the consequences of their proteolytic activity is central to our understanding of the molecular mechanisms of cell death. Diverse structural and regulatory proteins and enzymes, including protein kinase C delta, the retinoblastoma protein (a protein involved in cell survival), the DNA repair enzyme DNA-dependent protein kinase and the nuclear lamins, undergo specific and limited endoproteolytic cleavage by various caspases during apoptosis. Since individual caspases can cleave multiple substrates, the consequences of cleavage of only a single substrate are stilt poorly understood. Nevertheless, proteolytic activation of protein kinase C delta may be an important early step in the cell death pathway, and cleavage of the retinoblastoma protein could suppress its cell survival function, whereas proteolytic inactivation of DNA repair enzymes might compromise the ability of the cell to reverse DNA fragmentation. On the other hand, cleavages of nuclear and cytoplasmic structural proteins (e.g. the lamins and Gas2) appear to be required for or contribute lo the dramatic rearrangements in cellular architecture that are necessary for the completion of the cell death process. An emerging theme is that parallel and sequential proteolytic activation and inactivation of key protein substrates occurs during the multiple steps of apoptosis.
引用
收藏
页码:501 / 507
页数:7
相关论文
共 60 条
[1]   Human ICE/CED-3 protease nomenclature [J].
Alnemri, ES ;
Livingston, DJ ;
Nicholson, DW ;
Salvesen, G ;
Thornberry, NA ;
Wong, WW ;
Yuan, JY .
CELL, 1996, 87 (02) :171-171
[2]  
An B, 1996, CANCER RES, V56, P438
[3]  
BOLDIN MP, 1996, CELL, V85, P805
[4]   MICROFILAMENT REORGANIZATION DURING APOPTOSIS - THE ROLE OF GAS2, A POSSIBLE SUBSTRATE FOR ICE-LIKE PROTEASES [J].
BRANCOLINI, C ;
BENEDETTI, M ;
SCHNEIDER, C .
EMBO JOURNAL, 1995, 14 (21) :5179-5190
[5]   Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death [J].
CasciolaRosen, L ;
Nicholson, DW ;
Chong, T ;
Rowan, KR ;
Thornberry, NA ;
Miller, DK ;
Rosen, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (05) :1957-1964
[6]  
CASCIOLAROSEN LA, 1994, J BIOL CHEM, V269, P30757
[7]   Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis [J].
Casiano, CA ;
Martin, SJ ;
Green, DR ;
Tan, EM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :765-770
[8]  
Chinnaiyan AM, 1996, J BIOL CHEM, V271, P4573
[9]   Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1 beta-converting enzyme Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease [J].
Cryns, VL ;
Bergeron, L ;
Zhu, H ;
Li, HL ;
Yuan, JY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31277-31282
[10]   Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha [J].
Deiss, LP ;
Galinka, H ;
Berissi, H ;
Cohen, O ;
Kimchi, A .
EMBO JOURNAL, 1996, 15 (15) :3861-3870