Pad printing as a film forming technique for polymer solar cells

被引:52
作者
Krebs, Frederik C. [1 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
关键词
Pad printing; Polymer solar cells; P3MHOCT; P3CT; Preparation in air; Air stability; PERFORMANCE; FABRICATION; INKS;
D O I
10.1016/j.solmat.2008.09.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pad printing as a technique for preparing the active layer in polymer solar cells is presented. The technique employs a silicone rubber stamp to pick up the motif from a gravure plate and transfer it to the substrate. The strengths and limitations of pad printing are discussed and polymer solar cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver paste back electrode. The P3MHOCT was converted to poly(3-carboxy-dithiophene) (P3CT) in situ by heating the film to 200 degrees C for a brief period. The entire printing and device preparation was carried out in the ambient atmosphere and the devices obtained had a good stability in air during storage and operation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:484 / 490
页数:7
相关论文
共 43 条
[1]   Polymer solar cells: screen-printing as a novel deposition technique [J].
Aernouts, T ;
Vanlaeke, P ;
Poortmans, J ;
Heremans, P .
ORGANIC OPTOELECTRONICS AND PHOTONICS, 2004, 5464 :252-260
[2]   Polymer based organic solar cells using ink-jet printed active layers [J].
Aernouts, T. ;
Aleksandrov, T. ;
Girotto, C. ;
Genoe, J. ;
Poortmans, J. .
APPLIED PHYSICS LETTERS, 2008, 92 (03)
[3]  
[Anonymous], 1992, Modern Coating and Drying Technology
[4]   Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J].
Beek, WJE ;
Wienk, MM ;
Kemerink, M ;
Yang, XN ;
Janssen, RAJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19) :9505-9516
[5]   An explanation for the high stability of polycarboxythiophenes in photovoltaic devices- A solid-state NMR dipolar recoupling study [J].
Bierring, Morten ;
Nielsen, Julie S. ;
Siu, Ana ;
Nielsen, Niels Chr. ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (07) :772-784
[6]   Polythiophene by solution processing [J].
Bjerring, Morten ;
Nielsen, Julie Sogaard ;
Nielsen, Niels Chr. ;
Krebs, Frederik C. .
MACROMOLECULES, 2007, 40 (16) :6012-6013
[7]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[8]  
2-A
[9]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[10]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542