Lipid raft disruption triggers protein kinase C and Src-dependent protein kinase D activation and Kidins220 phosphorylation in neuronal cells

被引:53
作者
Cabrera-Poch, N [1 ]
Sánchez-Ruiloba, L [1 ]
Rodríguez-Martínez, M [1 ]
Iglesias, T [1 ]
机构
[1] Univ Autonoma Madrid, CSIC, Inst Invest Biomed Alberto Sols, Madrid 28029, Spain
关键词
D O I
10.1074/jbc.M312242200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kidins220 ( kinase D-interacting substrate of 220 kDa) is a novel neurospecific protein recently cloned as the first substrate for the Ser/Thr kinase protein kinase D (PKD). Herein we report that Kidins220 is constitutively associated to lipid rafts in PC12 cells, rat primary cortical neurons, and brain synaptosomes. Immunocytochemistry and confocal microscopy together with sucrose gradient fractionation show co-localization of Kidins220 and lipid raft-associated proteins. In addition, cholesterol depletion of cell membranes with methyl-beta-cyclodextrin dramatically alters Kidins220 localization and detergent solubility. By studying the putative involvement of lipid rafts in PKD activation and signaling we have found that active PKD partitions in lipid raft fractions after sucrose gradient centrifugation and that green fluorescent protein-PKD translocates to lipid raft microdomains at the plasma membrane after phorbol ester treatment. Strikingly, lipid rafts disruption by methyl-beta-cyclodextrin delays green fluorescent protein-PKD translocation, as determined by live cell confocal microscopy, and activates PKD, increasing Kidins220 phosphorylation on Ser(919) by a mechanism involving PKCepsilon and the small soluble tyrosine kinase Src. Collectively, these results reveal the importance of lipid rafts on PKD activation, translocation, and downstream signaling to its substrate Kidins220.
引用
收藏
页码:28592 / 28602
页数:11
相关论文
共 80 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   Cell-type specific phosphorylation of threonines T654 and T669 by PKD defines the signal capacity of the EGF receptor [J].
Bagowski, CP ;
Stein-Gerlach, M ;
Choidas, A ;
Ullrich, A .
EMBO JOURNAL, 1999, 18 (20) :5567-5576
[3]  
Bilderback TR, 1997, J BIOL CHEM, V272, P10922
[4]   Caveolin interacts with Trk A and p75NTR and regulates neurotrophin signaling pathways [J].
Bilderback, TR ;
Gazula, VR ;
Lisanti, MP ;
Dobrowsky, RT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (01) :257-263
[5]   An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation [J].
Bowden, ET ;
Barth, M ;
Thomas, D ;
Glazer, RI ;
Mueller, SC .
ONCOGENE, 1999, 18 (31) :4440-4449
[6]   Protein kinase Cμ regulation of the JNK pathway is triggered via phosphoinositide-dependent kinase 1 and protein kinase Cε [J].
Brändlin, I ;
Eiseler, T ;
Salowsky, R ;
Johannes, FJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45451-45457
[7]   Protein kinase C (PKC) η-mediated PKCμ activation modulates ERK and JNK signal pathways [J].
Brändlin, I ;
Hübner, S ;
Eiseler, T ;
Martinez-Moya, M ;
Horschinek, A ;
Hausser, A ;
Link, G ;
Rupp, S ;
Storz, P ;
Pfizenmaier, K ;
Johannes, FJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (08) :6490-6496
[8]   SURVIVAL AND GROWTH OF HIPPOCAMPAL-NEURONS IN DEFINED MEDIUM AT LOW-DENSITY - ADVANTAGES OF A SANDWICH CULTURE TECHNIQUE OR LOW OXYGEN [J].
BREWER, GJ ;
COTMAN, CW .
BRAIN RESEARCH, 1989, 494 (01) :65-74
[9]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[10]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136