Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR

被引:87
作者
Antoniou, Maria G. [1 ]
Nicolaou, Persoulla A. [2 ]
Shoemaker, Jody A. [3 ]
de la Cruz, Armah A. [3 ]
Dionysiou, Dionysios D. [1 ]
机构
[1] Univ Cincinnati, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, Cincinnati, OH 45267 USA
[3] US EPA, Off Res & Dev, Cincinnati, OH 45268 USA
基金
美国国家科学基金会;
关键词
Cyanotoxins; Microcystin-LR; Photocatalytic; TiO2; photocatalysis; Thin films; Water treatment; Water detoxification; PP1; enzyme; PHOSPHATASE INHIBITION ASSAY; LINKED-IMMUNOSORBENT-ASSAY; HETEROGENEOUS PHOTOCATALYSIS; CYANOBACTERIAL TOXINS; DEGRADATION; OXYGEN; LIGHT; DECOMPOSITION; DESTRUCTION; NODULARINS;
D O I
10.1016/j.apcatb.2009.05.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigated the use of thin transparent TiO2 photocatalytic films, prepared with novel sol-gel methods containing surfactants as templating materials, for the degradation of the cyanotoxin, microcystin-LR (MC-LR). MC-LR is an emerging contaminant from the Contaminant Candidate Lists (CCLs 1-3) of the USEPA. The effects of UV-A radiation, solution pH, initial toxin concentration, coated surface area of the TiO2 films and their structural properties (porosity, crystallinity and thickness) on the degradation rate of MC-LR were investigated. Photolysis did not occur with UV-A radiation. Acidic pH was more efficient for the degradation of MC-LR due to toxin interaction with the catalyst surface and increased adsorption into the porous films. The degradation profiles of the toxin at different initial concentrations were fitted with pseudo-first order kinetics. Films prepared with three coatings (0.3 mu m thickness) had the best performance at acidic and neutral pH, while the exclusion of surfactant from the preparation method resulted in non-porous films with decreased performance. The parameter that mostly affected the degradation rate was the solution pH. The toxicity of the treated samples, evaluated by an in-house protein phosphatase 1 assay, indicated that treatment with the TiO2 photocatalytic films indeed resulted in complete removal of MC-LR's toxicity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 52 条
[1]   KINETIC-STUDIES IN HETEROGENEOUS PHOTOCATALYSIS .2. TIO2-MEDIATED DEGRADATION OF 4-CHLOROPHENOL ALONE AND IN A 3-COMPONENT MIXTURE OF 4-CHLOROPHENOL, 2,4-DICHLOROPHENOL, AND 2,4,5-TRICHLOROPHENOL IN AIR-EQUILIBRATED AQUEOUS-MEDIA [J].
ALEKABI, H ;
SERPONE, N ;
PELIZZETTI, E ;
MINERO, C ;
FOX, MA ;
DRAPER, RB .
LANGMUIR, 1989, 5 (01) :250-255
[2]   USE OF A COLORIMETRIC PROTEIN PHOSPHATASE INHIBITION ASSAY AND ENZYME-LINKED-IMMUNOSORBENT-ASSAY FOR THE STUDY OF MICROCYSTINS AND NODULARINS [J].
AN, JS ;
CARMICHAEL, WW .
TOXICON, 1994, 32 (12) :1495-1507
[3]  
[Anonymous], CHINA VOWS CLEAN POL
[4]  
[Anonymous], Australian Drinking Water Guidelines | NHMRC [WWW Document]
[5]   LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR [J].
Antoniou, Maria G. ;
Shoemaker, Jody A. ;
de la Cruz, Armah A. ;
Dionysiou, Dionysios D. .
TOXICON, 2008, 51 (06) :1103-1118
[6]   Application of immobilized titanium dioxide photocatalysts for the degradation of creatinine and phenol, model organic contaminants found in NASA's spacecrafts wastewater streams [J].
Antoniou, Maria G. ;
Dionysiou, Dionysios D. .
CATALYSIS TODAY, 2007, 124 (3-4) :215-223
[7]   Unveiling New Degradation Intermediates/Pathways from the Photocatalytic Degradation of Microcystin-LR [J].
Antoniou, Maria G. ;
Shoemaker, Jody A. ;
De La Cruz, Armah A. ;
Dionysiou, Dionysios D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (23) :8877-8883
[8]   Cyanotoxins: New generation of water contaminants [J].
Antoniou, MG ;
de la Cruz, AA ;
Dionysiou, DD .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2005, 131 (09) :1239-1243
[9]   Photocatalytic degradation of ammonia and butyric acid in plug-flow reactor: Degradation kinetic modeling with contribution of mass transfer [J].
Boulinguiez, Benoit ;
Bouzaza, Abdelkrim ;
Merabet, Smail ;
Wolbert, Dominique .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2008, 200 (2-3) :254-261
[10]   CYANOBACTERIA SECONDARY METABOLITES - THE CYANOTOXINS [J].
CARMICHAEL, WW .
JOURNAL OF APPLIED BACTERIOLOGY, 1992, 72 (06) :445-459