Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles

被引:84
作者
Pei, ZM [1 ]
Ward, JM
Schroeder, JI
机构
[1] Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Genet Mol, La Jolla, CA 92093 USA
关键词
D O I
10.1104/pp.121.3.977
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca2+, calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg2+ levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg2+ inhibited fast vacuolar (FV) currents with a K-i of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg2+ at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg2+, cytosolic Ca2+ at less than 10 mu M did not activate slow vacuolar (SV) currents. However, when cytosolic Mg2+ was present, submicromolar concentrations of cytosolic Ca2+ activated SV currents with a K-d Of approximately 227 nM, suggesting a synergistic Mg2+-Ca2+ effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg2+ concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca2+ with an affinity in the submicromolar range and a cytosolic low-affinity Mg2+-Ca2+ binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca2+ and is inhibitory. In conclusion, cytosolic Mg2+ sensitizes SV channels to physiological cytosolic Ca2+ elevations. Furthermore, we propose that cytosolic and vacuolar Mg2+ concentrations ensure that FV channels do not function as a continuous vacuolar K+ leak, which would prohibit stomatal opening.
引用
收藏
页码:977 / 986
页数:10
相关论文
共 57 条
[1]  
AGUS ZS, 1991, ANNU REV PHYSIOL, V53, P299, DOI 10.1146/annurev.physiol.53.1.299
[2]   The cell as a collection of protein machines: Preparing the next generation of molecular biologists [J].
Alberts, B .
CELL, 1998, 92 (03) :291-294
[3]   Vacuolar ion channels of higher plants [J].
Allen, GJ ;
Sanders, D .
ADVANCES IN BOTANICAL RESEARCH INCORPORATING ADVANCES IN PLANT PATHOLOGY, VOL 25: THE PLANT VACUOLE, 1997, 25 :217-252
[4]   Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium [J].
Allen, GJ ;
Sanders, D .
PLANT JOURNAL, 1996, 10 (06) :1055-1069
[5]   Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles [J].
Allen, GJ ;
Amtmann, A ;
Sanders, D .
JOURNAL OF EXPERIMENTAL BOTANY, 1998, 49 :305-318
[6]  
ALLEN GJ, 1995, PLANT CELL, V7, P1473
[7]   RELEASE OF CA2+ FROM INDIVIDUAL PLANT VACUOLES BY BOTH INSP(3) AND CYCLIC ADP-RIBOSE [J].
ALLEN, GJ ;
MUIR, SR ;
SANDERS, D .
SCIENCE, 1995, 268 (5211) :735-737
[8]   SIGNAL-TRANSDUCTION IN GUARD-CELLS [J].
ASSMANN, SM .
ANNUAL REVIEW OF CELL BIOLOGY, 1993, 9 :345-375
[9]   Physiology of ion transport across the tonoplast of higher plants [J].
Barkla, BJ ;
Pantoja, O .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :159-184
[10]   ELECTRICAL MEASUREMENTS ON ENDOMEMBRANES [J].
BERTL, A ;
BLUMWALD, E ;
CORONADO, R ;
EISENBERG, R ;
FINDLAY, G ;
GRADMANN, D ;
HILLE, B ;
KOHLER, K ;
KOLB, HA ;
MACROBBIE, E ;
MEISSNER, G ;
MILLER, C ;
NEHER, E ;
PALADE, P ;
PANTOJA, O ;
SANDERS, D ;
SCHROEDER, J ;
SLAYMAN, C ;
SPANSWICK, R ;
WALKER, A ;
WILLIAMS, A .
SCIENCE, 1992, 258 (5084) :873-874