Highly confined photon transport in subwavelength metallic slot waveguides

被引:234
作者
Dionne, J. A.
Lezec, H. J.
Atwater, Harry A.
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] CNRS, F-75794 Paris 16, France
关键词
Interfaces (materials) - Light propagation - Photons - Surface plasmon resonance - Transport properties;
D O I
10.1021/nl0610477
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report experimental realization of subwavelength slot waveguides that exhibit both micrometer-range propagation and high spatial confinement of light. Attention is given to rectangular waveguides with a Si3N4 core and Ag cladding; core thicknesses of 50-100 nm and widths of 250 nm - 10 mu m are explored. Propagation lengths of similar to 5 lambda are achieved with light confined to lateral and transverse dimensions of similar to lambda/5 and similar to lambda/2, respectively. This unique combination of light localization and propagation is achieved via interacting surface plasmons, which produce short modal wavelengths and strong field confinement at each metal/dielectric interface.
引用
收藏
页码:1928 / 1932
页数:5
相关论文
共 16 条
  • [1] Guiding and confining light in void nanostructure
    Almeida, VR
    Xu, QF
    Barrios, CA
    Lipson, M
    [J]. OPTICS LETTERS, 2004, 29 (11) : 1209 - 1211
  • [2] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [3] Channel plasmon subwavelength waveguide components including interferometers and ring resonators
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Laluet, JY
    Ebbesen, TW
    [J]. NATURE, 2006, 440 (7083) : 508 - 511
  • [4] Channel plasmon-polariton guiding by subwavelength metal grooves
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Ebbesen, TW
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (04)
  • [5] Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization
    Dionne, JA
    Sweatlock, LA
    Atwater, HA
    Polman, A
    [J]. PHYSICAL REVIEW B, 2006, 73 (03)
  • [6] Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model
    Dionne, JA
    Sweatlock, LA
    Atwater, HA
    Polman, A
    [J]. PHYSICAL REVIEW B, 2005, 72 (07)
  • [7] The optical response of nanostructured surfaces and the composite diffracted evanescent wave model
    Gay, G
    Alloschery, O
    De Lesegno, BV
    O'Dwyer, C
    Weiner, J
    Lezec, HJ
    [J]. NATURE PHYSICS, 2006, 2 (04) : 262 - 267
  • [8] Surface plasmon propagation in microscale metal stripes
    Lamprecht, B
    Krenn, JR
    Schider, G
    Ditlbacher, H
    Salerno, M
    Felidj, N
    Leitner, A
    Aussenegg, FR
    Weeber, JC
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (01) : 51 - 53
  • [9] Rationale and challenges for optical interconnects to electronic chips
    Miller, DAB
    [J]. PROCEEDINGS OF THE IEEE, 2000, 88 (06) : 728 - 749
  • [10] Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity
    Miyazaki, HT
    Kurokawa, Y
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (09)