Equivalence of recurrence relations for Feynman integrals with the same total number of external and loop momenta

被引:29
作者
Baikov, PA [1 ]
Smirnov, VA [1 ]
机构
[1] Moscow State Univ, Inst Phys Nucl, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(00)00222-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the problem of solving recurrence relations for L-loop (R + 1)-point Feynman integrals within the method of integration by parts is equivalent to the corresponding problem for (L + R)-loop vacuum or (L + R - 1)-loop propagator-type integrals. Using this property we solve recurrence relations for 2-loop massless vertex diagrams, with arbitrary numerators and integer powers of propagators in the case when two legs are on the light cone, by reducing the problem to the well-known solution of the corresponding recurrence relations for massless 3-loop propagator diagrams with specific boundary conditions. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:367 / 372
页数:6
相关论文
共 16 条
[2]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20
[3]   INTEGRATION BY PARTS - THE ALGORITHM TO CALCULATE BETA-FUNCTIONS IN 4-LOOPS [J].
CHETYRKIN, KG ;
TKACHOV, FV .
NUCLEAR PHYSICS B, 1981, 192 (01) :159-204
[4]   On-shell two-loop three-gluon vertex [J].
Davydychev, AI ;
Osland, P .
PHYSICAL REVIEW D, 1999, 59 (01)
[5]  
EIGEN G, 1997, AIP, P354
[6]  
EIGEN G, HEPPH9708423
[7]   DIMENSIONALLY REGULARIZED 2-LOOP ON-SHELL QUARK FORM-FACTOR [J].
GONSALVES, RJ .
PHYSICAL REVIEW D, 1983, 28 (06) :1542-1549
[8]   INTEGRALS FOR 2-LOOP CALCULATIONS IN MASSLESS QCD [J].
KRAMER, G ;
LAMPE, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (04) :945-956
[9]   Asymptotic expansions of two-loop Feynman diagrams in the Sudakov limit [J].
Smirnov, VA .
PHYSICS LETTERS B, 1997, 404 (1-2) :101-107
[10]  
SMIRNOV VA, 1997, P 5 INT C PHYS STAND