The geometry of the master equation and topological quantum field theory

被引:415
作者
Alexandrov, M [1 ]
Schwarz, A [1 ]
Zaboronsky, O [1 ]
Kontsevich, M [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1997年 / 12卷 / 07期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0217751X97001031
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In Batalin-Vilkovisky formalism, a classical mechanical system is specified by means of a solution to the classical master equation. Geometrically, such a solution can be considered as a QP-manifold, i.e. a supermanifold equipped with an odd vector field Q obeying {Q, Q} = 0 and with Q-invariant odd symplectic structure. We study geometry of QP-manifolds. In particular, we describe some construction of QP-manifolds and prove a classification theorem (under certain conditions). We apply these geometric constructions to obtain in a natural way the action functionals of two-dimensional topological sigma-models and to show that the Chern-Simons theory in BV-formalism arises as a sigma-model with target space IIG. (Here G stands for a Lie algebra and II denotes parity inversion.)
引用
收藏
页码:1405 / 1429
页数:25
相关论文
共 16 条