A note on input-to-state stabilization for nonlinear sampled-data systems

被引:115
作者
Nesic, D [1 ]
Laila, DS [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
input-to-state stability; nonlinear; sampled-data;
D O I
10.1109/TAC.2002.800663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We provide a framework for the design of L-infinity stabilizing controllers via approximate discrete-time models for sampled-data nonlinear systems with disturbances. In particular, we present sufficient conditions under which a discrete-time controller that input-to-state stabilizes an approximate discrete-time model of a nonlinear plant with disturbances would also input-to-state stabilize (in an appropriate sense) the exact discrete-time plant model.
引用
收藏
页码:1153 / 1158
页数:6
相关论文
共 16 条
[1]  
[Anonymous], NONLINEAR CONTROL YE
[2]  
[Anonymous], 1995, P IFAC NONLINEAR CON
[3]   ADAPTIVE IDENTIFICATION AND CONTROL ALGORITHMS FOR NONLINEAR BACTERIAL-GROWTH SYSTEMS [J].
DOCHAIN, D ;
BASTIN, G .
AUTOMATICA, 1984, 20 (05) :621-634
[4]  
Ferretti R, 1997, COMPUTING, V58, P351, DOI 10.1007/BF02684347
[5]  
GOODWIN GC, 1982, OPTIM CONTR APPL MET, V3, P443
[6]   Higher order numerical schemes for affinely controlled nonlinear systems [J].
Grüne, L ;
Kloeden, PE .
NUMERISCHE MATHEMATIK, 2001, 89 (04) :669-690
[7]   SMALL-GAIN THEOREM FOR ISS SYSTEMS AND APPLICATIONS [J].
JIANG, ZP ;
TEEL, AR ;
PRALY, L .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1994, 7 (02) :95-120
[8]  
Kristic M., 1995, Nonlinear and Adaptive Control Design
[9]   CONTROLLING NONLINEAR TIME-VARYING SYSTEMS VIA EULER APPROXIMATIONS [J].
MAREELS, IMY ;
PENFOLD, HB ;
EVANS, RJ .
AUTOMATICA, 1992, 28 (04) :681-696
[10]  
Nesic D, 2000, IEEE DECIS CONTR P, P2112, DOI 10.1109/CDC.2000.914106