G-quadruplex nucleic acids as therapeutic targets

被引:509
作者
Balasubramanian, Shankar [1 ,3 ]
Neidle, Stephen [2 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ London, Sch Pharm, Canc Res UK Biomol Struct Grp, London WC1N 1AX, England
[3] Univ Cambridge, Sch Clin Med, Cambridge CB2 0SP, England
关键词
INTRAMOLECULAR G-QUADRUPLEX; DNA-DAMAGE RESPONSE; HUMAN TELOMERE; SMALL-MOLECULE; K+ SOLUTION; IN-VITRO; DRUG RECOGNITION; STRUCTURAL BASIS; LIGAND RHPS4; PROMOTER;
D O I
10.1016/j.cbpa.2009.04.637
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nucleic acid sequences containing several short runs of guanine nucleotides can form complex higher order structures, termed quadruplexes. Their occurrence has been most extensively characterised at the telomeric ends of eukaryotic chromosomes, whose DNA comprises such sequences, and where the extreme 3' ends are single-stranded. This enables relatively facile formation of quadruplex arrangements under the influence of a quadruplex-selective small molecule to compete effectively with telomeric protein-DNA interactions. Occurrences of quadruplexes within the human and other genomes have been mapped by bioinformatics surveys, which have revealed over-representations in promoter regions, especially of genes involved in replication, such as oncogenes, as well as in 5'UTR regions. The highly distinctive nature of quadruplex topologies suggests that they can act as novel therapeutic targets, for example in the selective inhibition of transcription of a given oncogene, using designed small molecules to stabilise a particular quadruplex. This offers the prospect of an alternative to, for example, direct kinase targeting with small molecules, without the attendant issues of active-site resistance. We survey here the basis of these approaches, together with current progress, and discuss the mechanistic issues posed by quadruplex targeting.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 83 条
[1]   Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. implications for g-quadruplex stabilization [J].
Ambrus, A ;
Chen, D ;
Dai, JX ;
Jones, RA ;
Yang, DZ .
BIOCHEMISTRY, 2005, 44 (06) :2048-2058
[2]   Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution [J].
Ambrus, Attila ;
Chen, Ding ;
Dai, Jixun ;
Bialis, Tiffanie ;
Jones, Roger A. ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2723-2735
[3]   Studying telomere replication by Q-CO-FISH: the effect of telomestatin, a potent G-quadruplex ligand [J].
Arnoult, N. ;
Shin-Ya, K. ;
Londono-Vallejo, J. A. .
CYTOGENETIC AND GENOME RESEARCH, 2008, 122 (3-4) :229-236
[4]   Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: Small molecule regulation of c-kit oncogene expression [J].
Bejugam, Mallesham ;
Sewitz, Sven ;
Shirude, Pravin S. ;
Rodriguez, Raphael ;
Shahid, Ramla ;
Balasubramanian, Shankar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (43) :12926-+
[5]   Switching and signaling at the telomere [J].
Blackburn, EH .
CELL, 2001, 106 (06) :661-673
[6]   Quadruplex DNA: sequence, topology and structure [J].
Burge, Sarah ;
Parkinson, Gary N. ;
Hazel, Pascale ;
Todd, Alan K. ;
Neidle, Stephen .
NUCLEIC ACIDS RESEARCH, 2006, 34 (19) :5402-5415
[7]   The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function [J].
Burger, AM ;
Dai, FP ;
Schultes, CM ;
Reszka, AP ;
Moore, MJ ;
Double, JA ;
Neidle, S .
CANCER RESEARCH, 2005, 65 (04) :1489-1496
[8]   Structural basis of DNA quadruplex recognition by an acridine drug [J].
Campbell, Nancy H. ;
Parkinson, Gary N. ;
Reszka, Anthony P. ;
Neidle, Stephen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (21) :6722-+
[9]   Structural polymorphism within a regulatory element of the human KRAS promoter:: formation of G4-DNA recognized by nuclear proteins [J].
Cogoi, Susanna ;
Paramasivam, Manikandan ;
Spolaore, Barbara ;
Xodo, Luigi E. .
NUCLEIC ACIDS RESEARCH, 2008, 36 (11) :3765-3780
[10]   G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription [J].
Cogoi, Susanna ;
Xodo, Luigi E. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2536-2549