Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death

被引:138
作者
Ko, HS [1 ]
Uehara, T [1 ]
Nomura, Y [1 ]
机构
[1] Hokkaido Univ, Grad Sch Pharmaceut Sci, Dept Pharmacol, Sapporo, Hokkaido 0600812, Japan
关键词
D O I
10.1074/jbc.M203412200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Up-regulation of several stress proteins such as heat-shock proteins and glucose-regulated proteins participate in tolerance against environmental stress. Previously, we found that protein-disulfide isomerase (PDI) is specifically up-regulated in response to hypoxia/brain ischemia in astrocytes. In addition, the overexpression of this gene into neurons protects against apoptotic cell death induced by hypoxia/brain ischemia. To address the detailed function of PDI, we screened for proteins that interact with PDI using the yeast two-hybrid system. We report here that PDI interacts with ubiquilin, which has a ubiquitin-like domain and a ubiquitin-associated domain. Interestingly, ubiquilin is also up-regulated in response to hypoxia in glial cells with a time course similar to that of PDI induction. In hypoxia-treated glial cells, the endogenous ubiquilin and PDI were almost completely co-localized, suggesting that ubiquilin is an endoplasmic reticulum-associated protein. Overexpression of this gene in neuronal cells resulted in significant inhibition of the DNA fragmentation triggered by hypoxia, but not that induced by nitric oxide or staurosporine. Moreover, ubiquilin has the ability to attenuate CHOP induction by hypoxia. These observations suggested that ubiquilin together with PDI have critical functions as regulatory proteins for CHOP-mediated cell death, and therefore up-regulation of these proteins may result in acquisition of tolerance against ischemic stress in glial cells.
引用
收藏
页码:35386 / 35392
页数:7
相关论文
共 51 条
[1]   Interaction of phospholipase C γ 1 via its COOH-terminal SRC homology 2 domain with synaptojanin [J].
Ahn, SJ ;
Han, SJ ;
Mo, HJ ;
Chung, JK ;
Hong, SH ;
Park, TK ;
Kim, CG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 244 (01) :62-67
[2]  
Andrews DW, 1996, TRENDS BIOCHEM SCI, V21, P365
[3]   Hypoxia induces apoptosis in human neuroblastoma SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria [J].
Araya, R ;
Uehara, T ;
Nomura, Y .
FEBS LETTERS, 1998, 439 (1-2) :168-172
[4]   150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells [J].
Bando, Y ;
Ogawa, S ;
Yamauchi, A ;
Kuwabara, K ;
Ozawa, K ;
Hori, O ;
Yanagi, H ;
Tamatani, M ;
Tohyama, M .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 278 (06) :C1172-C1182
[5]   CHOP (GADD153) AND ITS ONCOGENIC VARIANT, TLS-CHOP, HAVE OPPOSING EFFECTS ON THE INDUCTION OF G(1)/S ARREST [J].
BARONE, MV ;
CROZAT, A ;
TABAEE, A ;
PHILIPSON, L ;
RON, D .
GENES & DEVELOPMENT, 1994, 8 (04) :453-464
[6]   Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center [J].
Biggins, S ;
Ivanovska, I ;
Rose, MD .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1331-1346
[7]   The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct [J].
Brodsky, JL ;
Werner, ED ;
Dubas, ME ;
Goeckeler, JL ;
Kruse, KB ;
McCracken, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3453-3460
[8]   OXIDATIVE STRESS, GLUTAMATE, AND NEURODEGENERATIVE DISORDERS [J].
COYLE, JT ;
PUTTFARCKEN, P .
SCIENCE, 1993, 262 (5134) :689-695
[9]   SEQUENCE OF PROTEIN DISULFIDE ISOMERASE AND IMPLICATIONS OF ITS RELATIONSHIP TO THIOREDOXIN [J].
EDMAN, JC ;
ELLIS, L ;
BLACHER, RW ;
ROTH, RA ;
RUTTER, WJ .
NATURE, 1985, 317 (6034) :267-270
[10]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888