Intracellular gene transfer:: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase

被引:52
作者
Daley, DO [1 ]
Clifton, R [1 ]
Whelan, J [1 ]
机构
[1] Univ Western Australia, Plant Mol Biol Grp, Dept Biochem & Mol Biol, Sch Biomed & Chem Sci, Crawley, WA 6009, Australia
关键词
D O I
10.1073/pnas.122354399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Subunit 2 of cytochrome c oxidase (Cox2) in legumes offers a rare opportunity to investigate factors necessary for successful gene transfer of a hydrophobic protein that is usually mitochondrial-encoded. We found that changes in local hydrophobicity were necessary to allow import of this nuclear-encoded protein into mitochondria. All legume species containing both a mitochondrial and nuclear encoded Cox2 displayed a similar pattern, with a large decrease in hydrophobicity evident in the first transmembrane region of the nuclear encoded protein compared with the organelle-encoded protein. Mitochondrial-encoded Cox2 could not be imported into mitochondria under the direction of the mitochondrial targeting sequence that readily supports the import of nuclear encoded Cox2. Removal of the first transmembrane region promotes import ability of the mitochondrial-encoded Cox2. Changing just two amino acids in the first transmembrane region of mitochondrial-encoded Cox2 to the corresponding amino acids in the nuclear encoded Cox2 also promotes import ability, whereas changing the same two amino acids in the nuclear encoded Cox2 to what they are in the mitochondrial-encoded copy prevents import. Therefore, changes in amino acids in the mature protein were necessary and sufficient for gene transfer to allow import under the direction of an appropriate signal to achieve the functional topology of Cox2.
引用
收藏
页码:10510 / 10515
页数:6
相关论文
共 39 条
[1]   Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants [J].
Adams, KL ;
Daley, DO ;
Qiu, YL ;
Whelan, J ;
Palmer, JD .
NATURE, 2000, 408 (6810) :354-357
[2]   Intracellular gene transfer in action:: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes [J].
Adams, KL ;
Song, KM ;
Roessler, PG ;
Nugent, JM ;
Doyle, JL ;
Doyle, JJ ;
Palmer, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13863-13868
[3]  
Adams KL, 2001, GENETICS, V158, P1289
[4]   Reductive evolution of resident genomes [J].
Andersson, SGE ;
Kurland, CG .
TRENDS IN MICROBIOLOGY, 1998, 6 (07) :263-268
[5]   Why mitochondrial genes are most often found in nuclei [J].
Berg, OG ;
Kurland, CG .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (06) :951-961
[6]  
BISSON R, 1982, J BIOL CHEM, V257, P6716
[7]   Organellar genes - why do they end up in the nucleus? [J].
Blanchard, JL ;
Lynch, M .
TRENDS IN GENETICS, 2000, 16 (07) :315-320
[8]   THE MITOCHONDRIAL GENOME ON ITS WAY TO THE NUCLEUS - DIFFERENT STAGES OF GENE-TRANSFER IN HIGHER-PLANTS [J].
BRENNICKE, A ;
GROHMANN, L ;
HIESEL, R ;
KNOOP, V ;
SCHUSTER, W .
FEBS LETTERS, 1993, 325 (1-2) :140-145
[9]  
CLAROS MG, 1995, COMPUT APPL BIOSCI, V11, P441
[10]   LIMITATIONS TO IN-VIVO IMPORT OF HYDROPHOBIC PROTEINS INTO YEAST MITOCHONDRIA - THE CASE OF A CYTOPLASMICALLY SYNTHESIZED APOCYTOCHROME-B [J].
CLAROS, MG ;
PEREA, J ;
SHU, YM ;
SAMATEY, FA ;
POPOT, JL ;
JACQ, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 228 (03) :762-771