Determinants, integrality and Noether's theorem for quantum commutative algebras

被引:11
作者
Cohen, M [1 ]
Westreich, S [1 ]
Zhu, SL [1 ]
机构
[1] BAR ILAN UNIV,INTERDISCIPLINARY DEPT SOCIAL SCI,IL-52900 RAMAT GAN,ISRAEL
关键词
D O I
10.1007/BF02785538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to generalize Noether's theorem for finite groups acting on commutative algebras, to finite-dimensional triangular Hopf algebras acting on quantum commutative algebras. In the process we construct a non-commutative determinant function which yields an analogue of the Cayley-Hamilton theorem for certain endomorphisms.
引用
收藏
页码:185 / 222
页数:38
相关论文
共 28 条
[1]   ACTIONS OF COMMUTATIVE HOPF-ALGEBRAS [J].
BERGEN, J ;
COHEN, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :159-164
[2]   CROSSED-PRODUCTS AND INNER ACTIONS OF HOPF-ALGEBRAS [J].
BLATTNER, RJ ;
COHEN, M ;
MONTGOMERY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :671-711
[3]   INTEGRALITY FOR PI-RINGS [J].
BRAUN, A ;
VONESSEN, N .
JOURNAL OF ALGEBRA, 1992, 151 (01) :39-79
[4]   THE NILPOTENCY OF THE RADICAL IN A FINITELY GENERATED PI RING [J].
BRAUN, A .
JOURNAL OF ALGEBRA, 1984, 89 (02) :375-396
[5]   SEMIINVARIANTS FOR HOPF ALGEBRA ACTIONS [J].
COHEN, M ;
RAIANU, S ;
WESTREICH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 88 (1-3) :279-306
[6]   FROM SUPERSYMMETRY TO QUANTUM COMMUTATIVITY [J].
COHEN, M ;
WESTREICH, S .
JOURNAL OF ALGEBRA, 1994, 168 (01) :1-27
[7]  
Demazure M., 1970, GROUPES ALGEBRIQUES, V1
[8]  
Drinfel'd VG., 1990, LENINGRAD MATH J, V1, P321
[9]  
DRINFELD V, 1986, P INT C MATH BERK, P789
[10]  
FERRERSANTOS W, IN PRESS J ALGEBRA