Contraction integral equation method in three-dimensional electromagnetic modeling -: art. no. 1089

被引:106
作者
Hursán, G [1 ]
Zhdanov, MS [1 ]
机构
[1] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA
关键词
electromagnetic; modeling; integral equation; contraction;
D O I
10.1029/2001RS002513
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[1] The integral equation method has been proven to be an efficient tool to model three-dimensional electromagnetic problems. Owing to the full linear system to be solved, the method has been considered effective only in the case of models consisting of a strongly limited number of cells. However, recent advances in matrix storage and multiplication issues facilitate the modeling of horizontally large structures. Iterative methods are the most feasible techniques for obtaining accurate solutions for such problems. In this paper we demonstrate that the convergence of iterative methods can be improved significantly, if the original integral equation is replaced by an equation based on the modified Green's operator with the norm less or equal to one. That is why we call this technique the Contraction Integral Equation (CIE) method. We demonstrate that application of the modified Green's operator can be treated as a preconditioning of the original problem. We have performed a comparative study of the convergence of different iterative solvers applied to the original and contraction integral equations. The results show that the most effective solvers are the BIGGSTAB, QMRCGSTAB, and CGMRES algorithms, equipped with preconditioning based on the CIE method.
引用
收藏
页数:13
相关论文
共 44 条
[1]  
ALUMBAUGH DL, 1995, P 1 INT S 3 DIM EL S, P205
[2]   NUMERICAL-INTEGRATION OF RELATED HANKEL TRANSFORMS OF ORDERS 0 AND 1 BY ADAPTIVE DIGITAL FILTERING [J].
ANDERSON, WL .
GEOPHYSICS, 1979, 44 (07) :1287-1305
[3]  
[Anonymous], 1994, GEOELECTRICAL METHOD
[4]   Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons [J].
Avdeev, DB ;
Kuvshinov, AV ;
Pankratov, OV ;
Newman, GA .
GEOPHYSICS, 2002, 67 (02) :413-426
[5]   High-performance three-dimensional electromagnetic modelling using modified Neumann series. Wide-band numerical solution and examples [J].
Avdeev, DB ;
Kuvshinov, AV ;
Pankratov, OV ;
Newman, GA .
JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1997, 49 (11-12) :1519-1539
[6]   A QUASI-MINIMAL RESIDUAL VARIANT OF THE BI-CGSTAB ALGORITHM FOR NONSYMMETRIC SYSTEMS [J].
CHAN, TF ;
GALLOPOULOS, E ;
SIMONCINI, V ;
SZETO, T ;
TONG, CH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :338-347
[7]  
CHERYAUKA AB, 2001, P CONS EL MOD INV 20, P39
[8]   ELECTROMAGNETIC AND ELECTRICAL MODELING BY FINITE ELEMENT METHOD [J].
COGGON, JH .
GEOPHYSICS, 1971, 36 (01) :132-&
[9]  
DRIESSEN M, 1991, SIMULATION SEMICONDU, V4, P45
[10]   New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry [J].
Druskin, VL ;
Knizhnerman, LA ;
Lee, P .
GEOPHYSICS, 1999, 64 (03) :701-706