Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies

被引:54
作者
Pluchino, S
Furlan, R
Martino, G
机构
[1] Ist Sci San Raffaele, Dept Biotechnol, Neuroimmunol Unit, I-20132 Milan, Italy
[2] Ist Sci San Raffaele, Dept Neurol & Neurophysiol, I-20132 Milan, Italy
关键词
cell therapy; demyelination; multiple sclerosis; neural stem cells; remyelination; transplantation;
D O I
10.1097/00019052-200406000-00003
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose of review Spontaneous remyelination occurs in the central nervous system of patients with multiple sclerosis. However, this process is not robust enough to promote a functional and stable recovery of the myelin architecture. The development of cell-based therapies, aimed at promoting multifocal remyelination, is therefore foreseen. Recent findings Several experimental cell-based strategies aimed at replacing damaged myelin-forming cells have been developed in the last few years, However, most of these therapeutic approaches although consistently able to form new myelin sheaths at the transplantation site - are unfeasible owing to the mutifocality of the demyelinating process in multiple sclerosis patients and the inability to grow and produce large numbers of differentiated myelin-forming cells in vitro. Stem cell-based therapies that partially overcome these limitations have been proposed recently. Summary Stem cell-based remyelinating therapies can be considered a plausible alternative strategy in immune-mediated demyelinating disorders. However, before any potential applications in patients with multiple sclerosis can be envisaged, it is necessary to confront the following preliminary, and still unsolved, questions: (1) the ideal stem cell source for transplantation; (2) the most appropriate route of stem cell administration; and, last but not least, (3) the best approach for achieving an appropriate, functional and long-lasting integration of transplanted stem cells into the host tissue.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 104 条
[1]   Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord [J].
Akiyama, Y ;
Honmou, O ;
Kato, T ;
Uede, T ;
Hashi, K ;
Kocsis, JD .
EXPERIMENTAL NEUROLOGY, 2001, 167 (01) :27-39
[2]   Remyelination of the spinal cord following intravenous delivery of bone marrow cells [J].
Akiyama, Y ;
Radtke, C ;
Honmou, O ;
Kocsis, JD .
GLIA, 2002, 39 (03) :229-236
[3]  
Akiyama Y, 2002, J NEUROSCI, V22, P6623
[4]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[5]   Myelination of the canine central nervous system by glial cell transplantation: A model for repair of human myelin disease [J].
Archer, DR ;
Cuddon, PA ;
Lipsitz, D ;
Duncan, ID .
NATURE MEDICINE, 1997, 3 (01) :54-59
[6]  
Avellana-Adalid V, 1998, EUR J NEUROSCI, V10, P291
[7]   EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO [J].
BAIN, G ;
KITCHENS, D ;
YAO, M ;
HUETTNER, JE ;
GOTTLIEB, DI .
DEVELOPMENTAL BIOLOGY, 1995, 168 (02) :342-357
[8]   Remyelinated lesions in multiple sclerosis -: Magnetic resonance image appearance [J].
Barkhof, F ;
Brück, W ;
De Groot, CJA ;
Bergers, E ;
Hulshof, S ;
Geurts, J ;
Polman, CH ;
van der Valk, P .
ARCHIVES OF NEUROLOGY, 2003, 60 (08) :1073-1081
[9]   Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells [J].
Ben-Hur, T ;
Ben-Menachem, O ;
Furer, V ;
Einstein, O ;
Mizrachi-Kol, R ;
Grigoriadis, N .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (03) :623-631
[10]   Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis [J].
Ben-Hur, T ;
Einstein, O ;
Mizrachi-Kol, R ;
Ben-Menachem, O ;
Reinhartz, E ;
Karussis, D ;
Abramsky, O .
GLIA, 2003, 41 (01) :73-80