Uncertain probabilities I: the discrete case

被引:29
作者
Buckley, JJ [1 ]
Eslami, E
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
[2] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
关键词
imprecise probabilities; fuzzy probabilities; queuing theory;
D O I
10.1007/S00500-002-0234-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider discrete (finite) probability distributions where some of the probability values are uncertain. We model these uncertainties using fuzzy numbers. Then, employing restricted fuzzy arithmetic, we derive the basic laws of fuzzy (uncertain) probability theory. Applications are to the binomial probability distribution and queuing theory.
引用
收藏
页码:500 / 505
页数:6
相关论文
共 22 条
[1]   Fuzzy probability over fuzzy σ-field with fuzzy topological spaces [J].
Chiang, JS ;
Yao, JS .
FUZZY SETS AND SYSTEMS, 2000, 116 (02) :201-223
[2]   A theory of independent fuzzy probability for system reliability [J].
Dunyak, J ;
Saad, IW ;
Wunsch, D .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (03) :286-294
[3]   Uncertain inference using interval probability theory [J].
Hall, JW ;
Blockley, DI ;
Davis, JP .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1998, 19 (3-4) :247-264
[4]  
Huang CF, 2001, LECT NOTES COMPUT SC, V2206, P392
[5]   Constrained fuzzy arithmetic: Basic questions and some answers [J].
G. J. Klir ;
Y. Pan .
Soft Computing, 1998, 2 (2) :100-108
[6]  
Klir GJ, 1996, FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P1285, DOI 10.1109/FUZZY.1996.552362
[7]  
KLIR GJ, 1997, FUZZY SETS SYSTEMS, V91, P147
[8]   A methodology for computing with words [J].
Lawry, J .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 28 (2-3) :51-89
[9]   Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events [J].
Lukasiewicz, T .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1999, 21 (01) :23-61
[10]  
Moore R.E., 1979, STUDIES APPL NUMERIC