Analytical stability bound for a class of delayed fractional-order dynamic systems

被引:167
作者
Chen, YQ [1 ]
Moore, KL [1 ]
机构
[1] Utah State Univ, CSOIS, Dept Elect & Comp Engn, Logan, UT 84322 USA
关键词
delay; fractional-order dynamic systems; fractional-order integrator; fractional-order differentiator; stability bound; analytical solutions; Lambert function;
D O I
10.1023/A:1016591006562
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Delayed Linear Time-Invariant (LTI) fractional-order dynamic systems are considered. The analytical stability bound is obtained by using Lambert function. Two examples are presented to illustrate the obtained analytical results.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 43 条
[1]  
Abdelrahman M., 1996, P ANS INT TOP M NUCL, P1
[2]  
[Anonymous], 1949, P ROYAL SOC EDINBURG
[3]  
[Anonymous], IMACS SMC P LILL FRA
[4]  
[Anonymous], 1994, US Patent, Patent No. [Lune, B.J., US5371, 670, 5371670]
[5]  
Asl FM, 2000, P AMER CONTR CONF, P2496, DOI 10.1109/ACC.2000.878632
[6]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[7]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[8]  
Chen Y, 1999, LECT NOTES SERIES CO, V248
[9]  
Chen YQ, 2001, IEEE DECIS CONTR P, P1421, DOI 10.1109/CDC.2001.981091
[10]   Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W [J].
Chen, YQ ;
Moore, KL .
AUTOMATICA, 2002, 38 (05) :891-895