An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1

被引:90
作者
Zerangue, N
Jan, YN
Jan, LY
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Physiol, Program Neurosci, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Biochem, Program Neurosci, San Francisco, CA 94143 USA
关键词
D O I
10.1073/pnas.060016797
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One feature shared by all Shaker-type voltage-gated K+ channels is a highly conserved domain (T1) located in the cytoplasmic N terminus. The T1 domain is a key determinant of which subtypes can form heteromultimeric channels, suggesting that T1 functions during channel assembly. To better define the role of T1 during channel assembly and separate this function from potential contributions to channel permeation and gating, we replaced the T1 domain (residues 96-183) of ShakerB with a coiled-coil sequence (GCN4-LI) that forms parallel tetramers. Deleting T1 dramatically, but not completely. abolished channel formation under most expression conditions. Channels lacking T1 are functional and K+-selective, although they activate at more hyperpolarized membrane potentials and inactivate less completely. Insertion of the artificial tetramerization domain (GCN4-LI) restored efficient channel formation, suggesting that tetramerization of the cytoplasmic T1 domain promotes transmembrane channel assembly by increasing the effective local subunit concentration for T1 compatible subunits, We propose that T1 tetramerization promotes subfamily-specific assembly through kinetic partitioning of the assembly process, but is not required for subsequent steps in channel assembly and folding.
引用
收藏
页码:3591 / 3595
页数:5
相关论文
共 26 条
[1]   ASSEMBLY OF MAMMALIAN VOLTAGE-GATED POTASSIUM CHANNELS - EVIDENCE FOR AN IMPORTANT ROLE OF THE FIRST TRANSMEMBRANE SEGMENT [J].
BABILA, T ;
MOSCUCCI, A ;
WANG, HY ;
WEAVER, FE ;
KOREN, G .
NEURON, 1994, 12 (03) :615-626
[2]  
Bixby KA, 1999, NAT STRUCT BIOL, V6, P38
[3]   The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel [J].
Cachero, TG ;
Morielli, AD ;
Peralta, EG .
CELL, 1998, 93 (06) :1077-1085
[4]   Scanning mutagenesis of the putative transmembrane segments of K(ir)2.1, an inward rectifier potassium channel [J].
Collins, A ;
Chuang, HH ;
Jan, YN ;
Jan, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5456-5460
[5]   SHAKER, SHAL, SHAB, AND SHAW EXPRESS INDEPENDENT K+ CURRENT SYSTEMS [J].
COVARRUBIAS, M ;
WEI, A ;
SALKOFF, L .
NEURON, 1991, 7 (05) :763-773
[6]   THE BRAIN KV1.1 POTASSIUM CHANNEL - IN-VITRO AND IN-VIVO STUDIES ON SUBUNIT ASSEMBLY AND POSTTRANSLATIONAL PROCESSING [J].
DEAL, KK ;
LOVINGER, DM ;
TAMKUN, MM .
JOURNAL OF NEUROSCIENCE, 1994, 14 (03) :1666-1676
[7]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[8]   Structure of a voltage-dependent K+ channel β subunit [J].
Gulbis, JM ;
Mann, S ;
MacKinnon, R .
CELL, 1999, 97 (07) :943-952
[9]   A SWITCH BETWEEN 2-STRANDED, 3-STRANDED AND 4-STRANDED COILED COILS IN GCN4 LEUCINE-ZIPPER MUTANTS [J].
HARBURY, PB ;
ZHANG, T ;
KIM, PS ;
ALBER, T .
SCIENCE, 1993, 262 (5138) :1401-1407
[10]   Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain [J].
Holmes, TC ;
Fadool, DA ;
Ren, RB ;
Levitan, IB .
SCIENCE, 1996, 274 (5295) :2089-2091