Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: Probing the role of hydrophobic residue size in the central region of the fusion peptide

被引:63
作者
Han, X
Steinhauer, DA
Wharton, SA
Tamm, LK
机构
[1] Univ Virginia, Ctr Hlth Sci, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22906 USA
[2] Univ Virginia, Ctr Hlth Sci, Ctr Struct Biol, Charlottesville, VA 22906 USA
[3] Natl Inst Med Res, Div Virol, London NW7 1AA, England
关键词
D O I
10.1021/bi991232h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amino-terminal region of the membrane-anchored subunit of influenza virus hemagglutinin, the fusion peptide, is crucial for membrane fusion of this virus. The peptide is extruded from the interior of the protein and inserted into the lipid bilayer of the target membrane upon induction of a conformational change in the protein by low pH, Although the effects of several mutations in this region on the fusion behavior and the biophysical properties of the corresponding peptides have been studied, the structural requirements for an active fusion peptide have still not been defined, To probe the sensitivity of the fusion peptide structure and function to small hydrophobic perturbations in the middle of the hydrophobic region, we have individually replaced the alanine residues in positions 5 and 7 with smaller (glycine) or bulkier (valine) hydrophobic residues and measured the extent of fusion mediated by these hemagglutinin constructs as well as some biophysical properties of the corresponding synthetic peptides in lipid bilayers, We find that position 5 tolerates a smaller and position 7 a larger hydrophobic side chain. All peptides contained segments of alpha-helical (33-45%) and beta-strand (13-16%) conformation as determined by CD and ATR-FTIR spectroscopy. The order parameters of the peptide helices and the lipid hydrocarbon chains were determined from measurements of the dichroism of the respective infrared absorption bands. Order parameters in the range of 0.0-0.6 were found for the helices of these peptides, which indicate that these peptides are most likely aligned with their alpha-helices at oblique angles to the membrane normal. Some (mostly fusogenic) peptides induced significant increases of the order parameter of the lipid hydrocarbon chains, suggesting that the lipid bilayer becomes more ordered in the presence of these peptides, possibly as a result of dehydration at the membrane surface.
引用
收藏
页码:15052 / 15059
页数:8
相关论文
共 41 条
[1]   SOLID-PHASE PEPTIDE-SYNTHESIS USING N-ALPHA-FLUORENYLMETHOXYCARBONYLAMINO ACID PENTAFLUOROPHENYL ESTERS [J].
ATHERTON, E ;
SHEPPARD, RC .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1985, (03) :165-166
[2]   ORIENTATION INTO THE LIPID BILAYER OF AN ASYMMETRIC AMPHIPATHIC HELICAL PEPTIDE LOCATED AT THE N-TERMINUS OF VIRAL FUSION PROTEINS [J].
BRASSEUR, R ;
VANDENBRANDEN, M ;
CORNET, B ;
BURNY, A ;
RUYSSCHAERT, JM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1029 (02) :267-273
[3]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[4]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[5]   INTENSITIES AND OTHER SPECTRAL PARAMETERS OF INFRARED AMIDE BANDS OF POLYPEPTIDES IN ALPHA-HELICAL FORM [J].
CHIRGADZE, YN ;
BRAZHNIKOV, EV .
BIOPOLYMERS, 1974, 13 (09) :1701-1712
[6]   INTENSITIES AND OTHER SPECTRAL PARAMETERS OF INFRARED AMIDE BANDS OF POLYPEPTIDES IN BETA- AND RANDOM FORMS [J].
CHIRGADZE, YN ;
SHESTOPALOV, BV ;
VENYAMINOV, SY .
BIOPOLYMERS, 1973, 12 (06) :1337-1351
[7]   EMPIRICAL PREDICTIONS OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1978, 47 :251-276
[8]   Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers [J].
Colotto, A ;
Epand, RM .
BIOCHEMISTRY, 1997, 36 (25) :7644-7651
[9]   THERMAL-MECHANICAL FLUCTUATIONS ENHANCE REPULSION BETWEEN BIOMOLECULAR LAYERS [J].
EVANS, EA ;
PARSEGIAN, VA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (19) :7132-7136
[10]   ORIENTATION OF MELITTIN IN PHOSPHOLIPID-BILAYERS - A POLARIZED ATTENUATED TOTAL REFLECTION INFRARED STUDY [J].
FREY, S ;
TAMM, LK .
BIOPHYSICAL JOURNAL, 1991, 60 (04) :922-930