Mood stabilizers, glycogen synthase kinase-3β and cell survival

被引:117
作者
Jope, RS [1 ]
Bijur, GN [1 ]
机构
[1] Univ Alabama, Dept Psychiat & Behav Neurobiol, Sparks Ctr, Birmingham, AL 35294 USA
关键词
apoptosis; CREB; lithium; bipolar disorder; neuroprotection; beta-catenin;
D O I
10.1038/sj.mp.4001017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycogen synthase kinase-3beta (GSK3beta) is a central figure in many intracellular signaling systems and is directly regulated by lithium. Substantial evidence now indicates that an important property of the mood stabilizer, lithium, is to influence GSK3beta-linked signaling pathways. This raises the possibility that other mood stabilizers act in a similar manner, which may include modulation of signaling systems leading to GSK3beta, direct regulation of GSK3beta or regulation of signaling intermediates downstream of GSK3beta, Downstream targets of GSK3beta, and thus potential targets of mood stabilizers, are several key transcription factors, including beta-catenin, AP-1, cyclic AMP-response element binding protein, NFkappaB, Myc, heat shock factor-1, nuclear factor of activated T-cells and CCAAT/enhancer-binding proteins. GSK3beta also is an important modulator of cell death, which may be a consequence of its regulatory effects on transcription factor activities. GSK3beta facilitates apoptosis, and lithium's inhibition of GSK3beta supports cell survival. Thus, signaling systems determining cell fate appear to be important targets of mood stabilizers, and these may include signaling pathways encompassing GSK3beta, including transcription factors regulated by GSK3beta.
引用
收藏
页码:S35 / S45
页数:11
相关论文
共 112 条
[1]   Lithium protects cultured neurons against β-amyloid-induced neurodegeneration [J].
Alvarez, G ;
Muñoz-Montaño, JR ;
Satrústegui, J ;
Avila, J ;
Bogónez, E ;
Díaz-Nido, J .
FEBS LETTERS, 1999, 453 (03) :260-264
[2]   TRANSCRIPTIONAL ACTIVATION BY THE HUMAN C-MYC ONCOPROTEIN IN YEAST REQUIRES INTERACTION WITH MAX [J].
AMATI, B ;
DALTON, S ;
BROOKS, MW ;
LITTLEWOOD, TD ;
EVAN, GI ;
LAND, H .
NATURE, 1992, 359 (6394) :423-426
[3]   Synergistic effects of tetrahydroaminoacridine and lithium on cholinergic function after excitotoxic basal forebrain lesions in rat [J].
Arendt, T ;
Lehmann, K ;
Seeger, G ;
Gärtner, U .
PHARMACOPSYCHIATRY, 1999, 32 (06) :242-247
[4]   Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells [J].
Asghari, V ;
Wang, JF ;
Reiach, JS ;
Young, LT .
MOLECULAR BRAIN RESEARCH, 1998, 58 (1-2) :95-102
[5]   Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3 [J].
Beals, CR ;
Sheridan, CM ;
Turck, CW ;
Gardner, P ;
Crabtree, GR .
SCIENCE, 1997, 275 (5308) :1930-1933
[6]   Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration [J].
Bhat, RV ;
Shanley, J ;
Correll, MP ;
Fieles, WE ;
Keith, RA ;
Scott, CW ;
Lee, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :11074-11079
[7]   Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3β in the regulation of HSF-1 activity [J].
Bijur, GN ;
Jope, RS .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (06) :2401-2408
[8]   Glycogen synthase kinase-3β facilitates staurosporine- and heat shock-induced apoptosis -: Protection by lithium [J].
Bijur, GN ;
De Sarno, P ;
Jope, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7583-7590
[9]   SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN [J].
BLACKWELL, TK ;
KRETZNER, L ;
BLACKWOOD, EM ;
EISENMAN, RN ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1149-1151
[10]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217