Cryogenic probe technology can significantly compensate for the inherently low sensitivity of natural abundance C-13 NMR spectroscopy. This now permits its routine use in NMR spectroscopy of biofluids, such as urine or plasma, with acquisition times that enable a high throughput of samples. Metabonomic studies often generate numerous samples in order to characterize fully the time-dependent biochemical response to stimuli, but until now, they have been largely conducted using H-1 NMR spectroscopy because of its high sensitivity and hence efficient data acquisition. Here, we demonstrate that information-rich 13C NMR spectra of rat urine can be obtained using appropriately short acquisition times suitable for biochemical samples when using a cryogenic probe. Furthermore, these data were amenable to automated pattern recognition analysis, which produced a profile of the metabolic response to the model hepatotoxin hydrazine that was consistent with earlier studies. Thus, a new source of detailed and complementary information is available to metabonomics using cryogenic probe 13C NMR spectroscopy.