Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep

被引:26
作者
Cantero, JL [1 ]
Atienza, M [1 ]
Salas, RM [1 ]
Dominguez-Marin, E [1 ]
机构
[1] Lab Sleep & Cognit, Seville 41005, Spain
关键词
slow-wave sleep; sleep spindles; alpha activity; spectral analysis; coherence; sleep homeostasis; use-dependent function of sleep;
D O I
10.1523/JNEUROSCI.22-11-04702.2002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Evidence suggests that sleep homeostasis is not only dependent on duration of previous wakefulness but also on experience- and/or use-dependent processes. Such homeostatic mechanisms are reflected by selective increases in the duration of a sleep stage, modifications to electrophysiological-metabolic brain patterns in specific sleep states, and/or reactivation to neuronal ensembles in subsequent sleep periods. Use-dependent sleep changes, apparently different from those changes caused by memory consolidation processes, are thought to reflect neuronal restoration processes after the sustained exposure to stimulation during the preceding wakefulness. In the present study, we investigated changes in the brain electrical activity pattern during human sleep after 6 hr of continuous auditory stimulation during previous wakefulness. Poststimulation nights showed a widespread increase of spectral power within the alpha (8-12 Hz) and sleep spindle (12-15 Hz) frequency range during slow-wave sleep (SWS) compared with the baseline night. This effect was mainly attributable to an enhanced EEG amplitude rather than an increase of oscillations, except for temporal (within alpha and sleep spindles) and parietal regions (within sleep spindles) in which both parameters contributed equally to the increase of spectral energy. Power increments were accompanied by a strengthening of the coherence between fronto-temporal cortical regions within a broad frequency range during SWS but to the detriment of the coherence between temporal and parieto-occipital areas, suggesting underlying compensatory mechanisms between temporal and other cortical regions. In both cases, coherence was built up progressively across the night, although no changes were observed within each SWS period. No electrophysiological changes were found in rapid eye movement sleep. These results point to SWS as a critical brain period for correcting the cortical synaptic imbalance produced by the predominant use of specific neuronal populations during the preceding wakefulness, as well as for synaptic reorganization after prolonged exposure to a novel sensory experience.
引用
收藏
页码:4702 / 4708
页数:7
相关论文
共 39 条
[1]  
[Anonymous], [No title captured]
[2]   RESTORATION OF BRAIN ENERGY-METABOLISM AS THE FUNCTION OF SLEEP [J].
BENINGTON, JH ;
HELLER, HC .
PROGRESS IN NEUROBIOLOGY, 1995, 45 (04) :347-360
[3]  
Borbely A A, 1982, Hum Neurobiol, V1, P195
[4]   SLEEP-DEPRIVATION - EFFECT ON SLEEP STAGES AND EEG POWER-DENSITY IN MAN [J].
BORBELY, AA ;
BAUMANN, F ;
BRANDEIS, D ;
STRAUCH, I ;
LEHMANN, D .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1981, 51 (05) :483-493
[5]   Effects of waking-auditory stimulation on human sleep architecture [J].
Cantero, JL ;
Atienza, M ;
Salas, RM .
BEHAVIOURAL BRAIN RESEARCH, 2002, 128 (01) :53-59
[6]   Presynaptic long-term potentiation in corticothalamic synapses [J].
Castro-Alamancos, MA ;
Calcagnotto, ME .
JOURNAL OF NEUROSCIENCE, 1999, 19 (20) :9090-9097
[7]  
Contreras D, 1997, J NEUROSCI, V17, P1179
[8]   CORTICAL SOURCE OF ALPHA-RHYTHM [J].
DASILVA, FHL ;
VANLEEUWEN, WS .
NEUROSCIENCE LETTERS, 1977, 6 (2-3) :237-241
[9]   RELATIVE CONTRIBUTIONS OF INTRA-CORTICAL AND THALAMO-CORTICAL PROCESSES IN THE GENERATION OF ALPHA RHYTHMS, REVEALED BY PARTIAL COHERENCE ANALYSIS [J].
DASILVA, FHL ;
VOS, JE ;
MOOIBROEK, J ;
VANROTTERDAM, A .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1980, 50 (5-6) :449-456
[10]   Cortically-induced coherence of a thalamic-generated oscillation [J].
Destexhe, A ;
Contreras, D ;
Steriade, M .
NEUROSCIENCE, 1999, 92 (02) :427-443