Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex

被引:116
作者
Wu, PYJ [1 ]
Winston, F [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.22.15.5367-5379.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae SAGA complex is required for the normal transcription of a large number of genes. Complex integrity depends on three core subunits, Spt7, Spt20, and Ada1. We have investigated the role of Spt7 in the assembly and function of SAGA. Our results show that Spt7 is important in controlling the levels of the other core subunits and therefore of SAGA. In addition, partial SAGA complexes containing Spt7 can be assembled in the absence of both Spt20 and Ada1. Through biochemical and genetic analyses of a series of spt7 deletion mutants, we have identified a region of Spt7 required for interaction with the SAGA component Spt8. An adjacent Spt7 domain was found to be required for a processed form of Spt7 that is present in a previously identified altered form of SAGA called SLIK, SAGA(alt), or SALSA. Analysis of an spt7 mutant with greatly reduced levels of SLIK/SAGA(alt)/SALSA suggests a subtle role for this complex in transcription that may be redundant with a subset of SAGA functions.
引用
收藏
页码:5367 / 5379
页数:13
相关论文
共 47 条
[1]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[2]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[3]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[4]   Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters [J].
Belotserkovskaya, R ;
Sterner, DE ;
Deng, M ;
Sayre, MH ;
Lieberman, PM ;
Berger, SL .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :634-647
[5]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[6]   Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction [J].
Brand, M ;
Yamamoto, K ;
Staub, A ;
Tora, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18285-18289
[7]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[8]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[9]   The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo [J].
Dudley, AM ;
Rougeulle, C ;
Winston, F .
GENES & DEVELOPMENT, 1999, 13 (22) :2940-2945
[10]   Identification and analysis of yeast nucleosomal histone acetyltransferase complexes [J].
Eberharter, A ;
John, S ;
Grant, PA ;
Utley, RT ;
Workman, JL .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1998, 15 (04) :315-321