A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus

被引:187
作者
Imbert, Isabelle
Guillemot, Jean-Claude
Bourhis, Jean-Marie
Bussetta, Cecile
Coutard, Bruno
Egloff, Marie-Pierre
Ferron, Francois
Gorbalenya, Alexander E.
Canard, Bruno
机构
[1] CNRS, F-13288 Marseille 9, France
[2] Univ Aix Marseille 1, UMR 6098, Ecole Super Ingn Luminy, F-13288 Marseille 9, France
[3] Univ Aix Marseille 2, F-13288 Marseille 9, France
[4] Leiden Univ, Med Ctr, Ctr Infect Dis, Dept Med Microbiol,Mol Virol Lab, Leiden, Netherlands
关键词
coronavirus; polymerase; replication; RNA; SARS;
D O I
10.1038/sj.emboj.7601368
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In (+) RNA coronaviruses, replication and transcription of the giant similar to 30 kb genome to produce genome- and subgenome-size RNAs of both polarities are mediated by a cognate membrane-bound enzymatic complex. Its RNA-dependent RNA polymerase (RdRp) activity appears to be supplied by non-structural protein 12 (nsp12) that includes an RdRp domain conserved in all RNA viruses. Using SARS coronavirus, we now show that coronaviruses uniquely encode a second RdRp residing in nsp8. This protein strongly prefers the internal 5'-(G/U)CC-3' tri-nucleotides on RNA templates to initiate the synthesis of complementary oligonucleotides of < 6 residues in a reaction whose fidelity is relatively low. Distant structural homology between the C-terminal domain of nsp8 and the catalytic palm subdomain of RdRps of RNA viruses suggests a common origin of the two coronavirus RdRps, which however may have evolved different sets of catalytic residues. A parallel between the nsp8 RdRp and cellular DNA-dependent RNA primases is drawn to propose that the nsp8 RdRp produces primers utilized by the primer-dependent nsp12 RdRp.
引用
收藏
页码:4933 / 4942
页数:10
相关论文
共 56 条
[1]   De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase [J].
Ackermann, M ;
Padmanabhan, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39926-39937
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Structure of arterivirus nsp4 -: The smallest chymotrypsin-like proteinase with an α/β C-terminal extension and alternate conformations of the oxyanion hole [J].
Barrette-Ng, IH ;
Ng, KKS ;
Mark, BL ;
van Aken, D ;
Cherney, MM ;
Garen, C ;
Kolodenko, Y ;
Gorbalenya, AE ;
Snijder, EJ ;
James, MNG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (42) :39960-39966
[4]   Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins [J].
Bateman, A ;
Birney, E ;
Durbin, R ;
Eddy, SR ;
Finn, RD ;
Sonnhammer, ELL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :260-262
[5]   The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor [J].
Bhardwaj, K ;
Guarino, L ;
Kao, CC .
JOURNAL OF VIROLOGY, 2004, 78 (22) :12218-12224
[6]   RIBOSOMAL FRAMESHIFTING ON VIRAL RNAS [J].
BRIERLEY, I .
JOURNAL OF GENERAL VIROLOGY, 1995, 76 :1885-1892
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   MAPPING INITIATION SITES FOR SIMIAN-VIRUS-40 DNA-SYNTHESIS EVENTS IN-VITRO [J].
BULLOCK, PA ;
TEVOSIAN, S ;
JONES, C ;
DENIS, D .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5043-5055
[9]   Structural genomics of the SARS coronavirus:: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein [J].
Campanacci, V ;
Egloff, MP ;
Longhi, S ;
Ferron, F ;
Rancurel, C ;
Salomoni, A ;
Durousseau, C ;
Tocque, F ;
Brémond, N ;
Dobbe, JC ;
Snijder, EJ ;
Canard, B ;
Cambillau, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2003, 59 :1628-1631
[10]   Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein [J].
Cañadillas, JMP ;
Varani, G .
EMBO JOURNAL, 2003, 22 (11) :2821-2830