Differential chromatin marking of introns and expressed exons by H3K36me3

被引:497
作者
Kolasinska-Zwierz, Paulina [1 ,2 ]
Down, Thomas [1 ,2 ]
Latorre, Isabel [1 ,2 ]
Liu, Tao [3 ]
Liu, X. Shirley [3 ,4 ]
Ahringer, Julie [1 ,2 ]
机构
[1] Univ Cambridge, Gurdon Inst, Cambridge CB2 1QN, England
[2] Univ Cambridge, Dept Genet, Cambridge CB2 1QN, England
[3] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
基金
英国惠康基金;
关键词
TRANSCRIPTION ELONGATION; METHYLATION STATES; HISTONE H3; SET2; RNA; METHYLTRANSFERASE; INTERFERENCE; RECRUITMENT; PATTERNS; MAPS;
D O I
10.1038/ng.322
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Variation in patterns of methylations of histone tails reflects and modulates chromatin structure and function(1). To provide a framework for the analysis of chromatin function in Caenorhabditis elegans, we generated a genome-wide map of histone H3 tail methylations. We find that C. elegans genes show distributions of histone modifications that are similar to those of other organisms, with H3K4me3 near transcription start sites, H3K36me3 in the body of genes and H3K9me3 enriched on silent genes. We also observe a novel pattern: exons are preferentially marked with H3K36me3 relative to introns. H3K36me3 exon marking is dependent on transcription and is found at lower levels in alternatively spliced exons, supporting a splicing-related marking mechanism. We further show that the difference in H3K36me3 marking between exons and introns is evolutionarily conserved in human and mouse. We propose that H3K36me3 exon marking in chromatin provides a dynamic link between transcription and splicing.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 30 条
  • [1] Splicing, transcription, and chromatin:: a menage a trois
    Allemand, Eric
    Batsche, Eric
    Muchardt, Christian
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2008, 18 (02) : 145 - 151
  • [2] Bargmann CI., 2006, WormBook, P1, DOI [10.1895/wormbook.1.123.1, DOI 10.1895/WORMBOOK.1.123.1]
  • [3] High-resolution profiling of histone methylations in the human genome
    Barski, Artern
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    [J]. CELL, 2007, 129 (04) : 823 - 837
  • [4] Genomic maps and comparative analysis of histone modifications in human and mouse
    Bernstein, BE
    Kamal, M
    Lindblad-Toh, K
    Bekiranov, S
    Bailey, DK
    Huebert, DJ
    McMahon, S
    Karlsson, EK
    Kulbokas, EJ
    Gingeras, TR
    Schreiber, SL
    Lander, ES
    [J]. CELL, 2005, 120 (02) : 169 - 181
  • [5] Blumenthal Thomas, 2005, WormBook, P1, DOI 10.1895/wormbook.1.5.1
  • [6] Histone modification patterns associated with the human X chromosome
    Brinkman, Arie B.
    Roelofsen, Thijs
    Pennings, Sebastiaan W. C.
    Martens, Joost H. A.
    Jenuwein, Thomas
    Stunnenberg, Hendrik G.
    [J]. EMBO REPORTS, 2006, 7 (06) : 628 - 634
  • [7] Genome sequence of the nematode C-elegans:: A platform for investigating biology
    不详
    [J]. SCIENCE, 1998, 282 (5396) : 2012 - 2018
  • [8] Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    Carrozza, MJ
    Li, B
    Florens, L
    Suganuma, T
    Swanson, SK
    Lee, KK
    Shia, WJ
    Anderson, S
    Yates, J
    Washburn, MP
    Workman, JL
    [J]. CELL, 2005, 123 (04) : 581 - 592
  • [9] Cui M., 2007, WORMBOOK, DOI DOI 10.1895/WORMBOOK.1.139.1
  • [10] A slow RNA polymerase II affects alternative splicing in vivo
    de la Mata, M
    Alonso, CR
    Kadener, S
    Fededa, JP
    Blaustein, M
    Pelisch, F
    Cramer, P
    Bentley, D
    Kornblihtt, AR
    [J]. MOLECULAR CELL, 2003, 12 (02) : 525 - 532