Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain

被引:140
作者
Lorger, Mihaela [1 ]
Krueger, Joseph S. [1 ]
O'Neal, Melissa [1 ]
Staflin, Karin [1 ]
Felding-Habermann, Brunhilde [1 ]
机构
[1] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
angiogenesis; brain metastasis; integrin activation; 4E-BP1; MALIGNANT-MELANOMA; TRANSLATION; EXPRESSION; ADHESION; PROLIFERATION; SWITCH; EIF4E; VEGF;
D O I
10.1073/pnas.0903035106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The incidence of brain metastasis is rising and poses a severe clinical problem, as we lack effective therapies and knowledge of mechanisms that control metastatic growth in the brain. Here we demonstrate a crucial role for high-affinity tumor cell integrin alpha(v)beta(3) in brain metastatic growth and recruitment of blood vessels. Although alpha(v)beta(3) is frequently up-regulated in primary brain tumors and metastatic lesions of brain homing cancers, we show that it is the alpha(v)beta(3) activation state that is critical for brain lesion growth. Activated, but not non-activated, tumor cell alpha(v)beta(3) supports efficient brain metastatic growth through continuous up-regulation of vascular endothelial growth factor (VEGF) protein under normoxic conditions. In metastatic brain lesions carrying activated alpha(v)beta(3), VEGF expression is controlled at the post-transcriptional level and involves phosphorylation and inhibition of translational respressor 4E-binding protein (4E-BP1). In contrast, tumor cells with non-activated alpha(v)beta(3) depend on hypoxia for VEGF induction, resulting in reduced angiogenesis, tumor cell apoptosis, and inefficient intracranial growth. Importantly, the microenvironment critically influences the effects that activated tumor cell alpha(v)beta(3) exerts on tumor cell growth. Although it strongly promoted intracranial growth, the activation state of the receptor did not influence tumor growth in the mammary fat pad as a primary site. Thus, we identified a mechanism by which metastatic cells thrive in the brain microenvironment and use the high-affinity form of an adhesion receptor to grow and secure host support for proliferation. Targeting this molecular mechanism could prove valuable for the inhibition of brain metastasis.
引用
收藏
页码:10666 / 10671
页数:6
相关论文
共 36 条
[1]  
ALBELDA SM, 1990, CANCER RES, V50, P6757
[2]   Specification of the direction of adhesive signaling by the integrin β cytoplasmic domain [J].
Arias-Salgado, EG ;
Lizano, S ;
Shattil, SJ ;
Ginsberg, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (33) :29699-29707
[3]   Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells [J].
Avdulov, S ;
Li, S ;
Michalek, V ;
Burrichter, D ;
Peterson, M ;
Perlman, DM ;
Manivel, JC ;
Sonenberg, N ;
Yee, D ;
Bitterman, PB ;
Polunovsky, VA .
CANCER CELL, 2004, 5 (06) :553-563
[4]  
Bachelder RE, 2001, CANCER RES, V61, P5736
[5]   Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis [J].
Bergers, G ;
Brekken, R ;
McMahon, G ;
Vu, TH ;
Itoh, T ;
Tamaki, K ;
Tanzawa, K ;
Thorpe, P ;
Itohara, S ;
Werb, Z ;
Hanahan, D .
NATURE CELL BIOLOGY, 2000, 2 (10) :737-744
[6]   The hypoxic response of tumors is dependent on their microenvironment [J].
Blouw, B ;
Song, HQ ;
Tihan, T ;
Bosze, J ;
Ferrara, N ;
Gerber, HP ;
Johnson, RS ;
Bergers, G .
CANCER CELL, 2003, 4 (02) :133-146
[7]   A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer [J].
Braunstein, Steve ;
Karpisheva, Ksenia ;
Pola, Carolina ;
Goldberg, Judith ;
Hochman, Tsivia ;
Yee, Herman ;
Cangiarella, Joan ;
Arju, Rezina ;
Formenti, Silvia C. ;
Schneider, Robert J. .
MOLECULAR CELL, 2007, 28 (03) :501-512
[8]   REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS [J].
BROOKS, PC ;
CLARK, RAF ;
CHERESH, DA .
SCIENCE, 1994, 264 (5158) :569-571
[9]   Adaptation of energy metabolism in breast cancer brain metastases [J].
Chen, Emily I. ;
Hewel, Johannes ;
Krueger, Joseph S. ;
Tiraby, Claire ;
Weber, Martin R. ;
Kralli, Anastasia ;
Becker, Katja ;
Yates, John R., III ;
Felding-Habermann, Brunhilde .
CANCER RESEARCH, 2007, 67 (04) :1472-1486
[10]   Integrin (α6β4) regulation of eIF-4E activity and VEGF translation:: a survival mechanism for carcinoma cells [J].
Chung, J ;
Bachelder, RE ;
Lipscomb, EA ;
Shaw, LM ;
Mercurio, AM .
JOURNAL OF CELL BIOLOGY, 2002, 158 (01) :165-174