Response of North American freshwater lakes to simulated future climates

被引:41
作者
Hostetler, SW
Small, EE
机构
[1] US Geol Survey, Corvallis, OR 97333 USA
[2] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA
来源
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION | 1999年 / 35卷 / 06期
关键词
climate change; freshwater lakes; aquatic ecosystem; lake modeling;
D O I
10.1111/j.1752-1688.1999.tb04241.x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We apply a physically based lake model to assess the response of North American lakes to future climate conditions as portrayed by the transient trace-gas simulations conducted with the Max Planck Institute (ECHAM4) and the Canadian Climate Center (CGCM1) atmosphere-ocean general circulation models (A/OGCMs). To quantify spatial patterns of lake responses (temperature, mixing, ice cover, evaporation) we ran the lake model for theoretical lakes of specified area, depth, and transparency over a uniformly spaced (50 lan) grid. The simulations were conducted for two 10-year periods that represent present climatic conditions and those around the time of CO2 doubling. Although the climate model output produces simulated lake responses that differ in specific regional details, there is broad agreement with regard to the direction and area of change. In particular, lake temperatures are generally warmer in the future as a result of warmer climatic conditions and a substantial loss (> 100 days/yr) of winter ice cover. Simulated summer lake temperatures are higher than 30 degrees C over the Midwest and south, suggesting the potential for future disturbance of existing aquatic ecosystems. Overall increases in lake evaporation combine with disparate changes in A/OGCM precipitation to produce future changes in net moisture (precipitation minus evaporation) that are of less fidelity than those of lake temperature.
引用
收藏
页码:1625 / 1637
页数:13
相关论文
共 60 条
[1]  
BATES GT, 1993, MON WEATHER REV, V121, P1373, DOI 10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO
[2]  
2
[3]  
BATES GT, 1995, MON WEATHER REV, V123, P1505, DOI 10.1175/1520-0493(1995)123<1505:TYSOTG>2.0.CO
[4]  
2
[5]  
Benson L.V., 1990, CLIM DYNAM, V4, P207, DOI DOI 10.1007/BF00209522
[6]  
Brutsaert W., 2013, Evaporation into the Atmosphere: Theory, History and Applications
[7]   USE OF A RESERVOIR WATER-QUALITY MODEL TO SIMULATE GLOBAL CLIMATE CHANGE EFFECTS ON FISH HABITAT [J].
CHANG, LH ;
RAILSBACK, SF ;
BROWN, RT .
CLIMATIC CHANGE, 1992, 20 (04) :277-296
[8]   Canadian freshwater wetlands and climate change [J].
Clair, TA .
CLIMATIC CHANGE, 1998, 40 (02) :163-165
[9]  
Covich AP, 1997, HYDROL PROCESS, V11, P993
[10]   LAURENTIAN GREAT-LAKES DOUBLE-CO2 CLIMATE CHANGE HYDROLOGICAL IMPACTS [J].
CROLEY, TE .
CLIMATIC CHANGE, 1990, 17 (01) :27-47