Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL

被引:118
作者
Clarke, N [1 ]
Jimenez-Lara, AM [1 ]
Voltz, E [1 ]
Gronemeyer, H [1 ]
机构
[1] IGBMC, Dept Cell Biol & Signal Transduct, CNRS, INSERM,ULP, F-67404 Illkirch Graffenstaden, CU Strasbourg, France
关键词
apoptosis; interferon; IRF; retinoic acid; tumor suppressor;
D O I
10.1038/sj.emboj.7600302
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Retinoids and interferons are signaling molecules with pronounced anticancer activity. We show that in both acute promyelocytic leukemia and breast cancer cells the retinoic acid ( RA) and interferon signaling pathways converge on the promoter of the tumoricidal death ligand TRAIL. Promoter mapping, chromatin immunoprecipitation and RNA interference reveal that retinoid-induced interferon regulatory factor-1 (IRF-1), a tumor suppressor, is critically required for TRAIL induction by both RA and IFNgamma. Exposure of breast cancer cells to both antitumor agents results in enhanced TRAIL promoter occupancy by IRF-1 and coactivator recruitment, leading to strong histone acetylation and synergistic induction of TRAIL expression. In coculture experiments, pre-exposure of breast cancer cells to RA and IFNgamma induced a dramatic TRAIL-dependent apoptosis in heterologous cancer cells in a paracrine mode of action, while normal cells were not affected. Our results identify a novel TRAIL-mediated tumor suppressor activity of IRF-1 and suggest a mechanistic basis for the synergistic antitumor activities of certain retinoids and interferons. These data argue for combination therapies that activate the TRAIL pathway to eradicate tumor cells.
引用
收藏
页码:3051 / 3060
页数:10
相关论文
共 69 条
[1]   Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair [J].
Alcalay, M ;
Meani, N ;
Gelmetti, V ;
Fantozzi, A ;
Fagioli, M ;
Orleth, A ;
Riganelli, D ;
Sebastiani, C ;
Cappelli, E ;
Casciari, C ;
Sciurpi, MT ;
Mariano, AR ;
Minardi, SP ;
Luzi, L ;
Muller, H ;
Di Fiore, PP ;
Frosina, G ;
Pelicci, PG .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (11) :1751-1761
[2]   Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy [J].
Almasan, A ;
Ashkenazi, A .
CYTOKINE & GROWTH FACTOR REVIEWS, 2003, 14 (3-4) :337-348
[3]   The promise of retinoids to fight against cancer [J].
Altucci, L ;
Gronemeyer, H .
NATURE REVIEWS CANCER, 2001, 1 (03) :181-193
[4]   Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL [J].
Altucci, L ;
Rossin, A ;
Raffelsberger, W ;
Reitmair, A ;
Chomienne, C ;
Gronemeyer, H .
NATURE MEDICINE, 2001, 7 (06) :680-686
[5]  
Altucci L, 2004, VITAM HORM, V67, P319
[6]   Apoptosis control by death and decoy receptors [J].
Ashkenazi, A ;
Dixit, VM .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (02) :255-260
[7]   Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening [J].
Aza-Blanc, P ;
Cooper, CL ;
Wagner, K ;
Batalov, S ;
Deveraux, QL ;
Cooke, MP .
MOLECULAR CELL, 2003, 12 (03) :627-637
[8]   Interferon-alpha in tumor immunity and immunotherapy [J].
Belardelli, F ;
Ferrantini, M ;
Proietti, E ;
Kirkwood, JM .
CYTOKINE & GROWTH FACTOR REVIEWS, 2002, 13 (02) :119-134
[9]   The molecular architecture of the TNF superfamily [J].
Bodmer, JL ;
Schneider, P ;
Tschopp, J .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (01) :19-26
[10]   Cellular responses to interferon-gamma [J].
Boehm, U ;
Klamp, T ;
Groot, M ;
Howard, JC .
ANNUAL REVIEW OF IMMUNOLOGY, 1997, 15 :749-795