Numerical homogenization of nonlinear random parabolic operators

被引:74
作者
Efendiev, Y [1 ]
Pankov, A
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
homogenization; multiscale; upscaling; random; nonlinear; parabolic; finite element;
D O I
10.1137/030600266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the numerical homogenization of nonlinear random parabolic equations. This procedure is developed within a finite element framework. A careful choice of multiscale finite element bases and the global formulation of the problem on the coarse grid allow us to prove the convergence of the numerical method to the homogenized solution of the equation. The relation of the proposed numerical homogenization procedure to multiscale finite element methods is discussed. Within our numerical procedure one is able to approximate the gradients of the solutions. To show this feature of our method we develop numerical correctors that contain two scales, the numerical and the physical. Finally, we would like to note that our numerical homogenization procedure can be used for the general type of heterogeneities.
引用
收藏
页码:237 / 268
页数:32
相关论文
共 23 条
[1]  
Ando T., 1976, MONOGRAPHS TXB MECH
[2]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[3]  
[Anonymous], DIFFER INTEGR EQU
[4]  
BIROLI M, 1987, RIC MAT, V36, P11
[5]  
Deutsch C.V., 1998, GSLIB GEOSTATISTICAL
[6]  
DIBENEDETTO E, 1984, J REINE ANGEW MATH, V349, P83
[7]   Numerical homogenization of monotone elliptic operators [J].
Efendiev, Y ;
Pankov, A .
MULTISCALE MODELING & SIMULATION, 2003, 2 (01) :62-79
[8]  
EFENDIEV Y, UNPUB NUMER MATH
[9]  
EFENDIEV Y, UNPUB ELECT J DIFFER
[10]   CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS [J].
FANNJIANG, A ;
PAPANICOLAOU, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :333-408