Effects of cell tension on the small GTPase Rac

被引:198
作者
Katsumi, A
Milanini, J
Kiosses, WB
del Pozo, MA
Kaunas, R
Chien, S
Hahn, KM
Schwartz, MA
机构
[1] Scripps Res Inst, Dept Vasc Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Whitaker Inst Biomed Engn, La Jolla, CA 92093 USA
关键词
mechanotransduction; mechanical stretch; lamellipodia; polarization; Rac;
D O I
10.1083/jcb.200201105
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cells in the body are subjected to mechanical stresses such as tension, compression, and shear stress. These mechanical stresses play important roles in both physiological and pathological processes; however, mechanisms transducing mechanical stresses into biochemical signals remain elusive. Here, we demonstrated that equibiaxial stretch inhibited lamellipodia formation through deactivation of Rac. Nearly maximal effects on Rac activity were obtained with 10% strain. GAP-resistant, constitutively active V12Rac reversed this inhibition, supporting a critical role for Rac inhibition in the response to stretch. In contrast, activation of endogenous Rac with a constitutively active nucleotide exchange factor did not, suggesting that regulation of GAP activity most likely mediates the inhibition. Uniaxial stretch suppressed lamellipodia along the sides lengthened by stretch and increased it at the adjacent ends. A fluorescence assay for localized Rac showed comparable changes in activity along the sides versus the ends after uniaxial stretch. Blocking polarization of Rac activity by expressing V12Rac prevented subsequent alignment of actin stress fibers. Treatment with Y-27632 or ML-7 that inhibits myosin phosphorylation and contractility increased lamellipodia through Rac activation and decreased cell polarization. We hypothesize that regulation of Rac activity by tension may be important for motility, polarization, and directionality of cell movement.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 45 条
[1]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[2]   CORTICAL FLOW IN ANIMAL-CELLS [J].
BRAY, D ;
WHITE, JG .
SCIENCE, 1988, 239 (4842) :883-888
[3]   AXONAL GROWTH IN RESPONSE TO EXPERIMENTALLY APPLIED MECHANICAL TENSION [J].
BRAY, D .
DEVELOPMENTAL BIOLOGY, 1984, 102 (02) :379-389
[4]   Traction fields, moments, and strain energy that cells exert on their surroundings [J].
Butler, JP ;
Tolic-Norrelykke, IM ;
Fabry, B ;
Fredberg, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 282 (03) :C595-C605
[5]  
Chamberlain CE, 2000, METHOD ENZYMOL, V325, P389
[6]  
CLARKE MSF, 1992, J CELL SCI, V102, P533
[7]   Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases [J].
Cox, EA ;
Sastry, SK ;
Huttenlocher, A .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :265-277
[8]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[9]   REGULATION OF ENDOTHELIAL-CELL MORPHOGENESIS BY INTEGRINS, MECHANICAL FORCES, AND MATRIX GUIDANCE PATHWAYS [J].
DAVIS, GE ;
CAMARILLO, CW .
EXPERIMENTAL CELL RESEARCH, 1995, 216 (01) :113-123
[10]   Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK [J].
del Pozo, MA ;
Price, LS ;
Alderson, NB ;
Ren, XD ;
Schwartz, MA .
EMBO JOURNAL, 2000, 19 (09) :2008-2014