Regular network of contacting cylinders with implications for materials with negative Poisson ratios

被引:17
作者
Pikhitsa, PV [1 ]
机构
[1] Seoul Natl Univ, Inst Adv Machinery & Design, Natl CRI Ctr Nano Particle Control, Seoul 151742, South Korea
关键词
D O I
10.1103/PhysRevLett.93.015505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nontrivial periodic network of contacting infinite rigid cylinders is given. It is shown that the mutual contact constraints can exhaust all the degrees of freedom of the network but one, which is the primary cell size. In effect, the network can only expand or shrink uniformly, exhibiting the extreme Poisson ratio of -1. This may explain why inorganic and biological fibrous materials often have negative Poisson ratios and shows a way to design tubular or fibrous structural units for auxetic materials.
引用
收藏
页码:015505 / 1
页数:4
相关论文
共 13 条
[1]   Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes [J].
Bowick, M ;
Cacciuto, A ;
Thorleifsson, G ;
Travesset, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :148103/1-148103/4
[2]   NEGATIVE POISSON RATIOS AND STRAIN-DEPENDENT MECHANICAL-PROPERTIES IN ARTERIAL PROSTHESES [J].
CADDOCK, BD ;
EVANS, KE .
BIOMATERIALS, 1995, 16 (14) :1109-1115
[3]   THE ELASTICITY AND STRENGTH OF PAPER AND OTHER FIBROUS MATERIALS [J].
COX, HL .
BRITISH JOURNAL OF APPLIED PHYSICS, 1952, 3 (MAR) :72-79
[4]   Elastic anisotropy of a transversely isotropic random network of interconnected fibres:: non-triangulated network model [J].
Delincé, M ;
Delannay, F .
ACTA MATERIALIA, 2004, 52 (04) :1013-1022
[5]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN
[6]  
*EPAPS, EPRLTAO93018452
[7]  
Grima JN, 2000, ADV MATER, V12, P1912, DOI 10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO
[8]  
2-7
[9]  
Landau L, 1975, Theory of elasticity
[10]   COMPOSITE-MATERIALS WITH POISSON RATIOS CLOSE TO -1 [J].
MILTON, GW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1992, 40 (05) :1105-1137