Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons

被引:68
作者
Vukicevic, M [1 ]
Kellenberger, S [1 ]
机构
[1] Univ Lausanne, Dept Pharmacol & Toxicol, CH-1005 Lausanne, Switzerland
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2004年 / 287卷 / 03期
关键词
cellular excitability; neuronal signaling; pH;
D O I
10.1152/ajpcell.00127.2004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na+ channels that belong to the epithelial Na+ channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na+ and K+ channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
引用
收藏
页码:C682 / C690
页数:9
相关论文
共 34 条
[1]   Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons [J].
Askwith, CC ;
Wemmie, JA ;
Price, MP ;
Rokhlina, T ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18296-18305
[2]   ASIC-like, proton-activated currents in rat hippocampal neurons [J].
Baron, A ;
Waldmann, R ;
Lazdunski, M .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 539 (02) :485-494
[3]   Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy [J].
Biagini, G ;
Babinski, K ;
Avoli, M ;
Marcinkiewicz, M ;
Séguéla, P .
NEUROBIOLOGY OF DISEASE, 2001, 8 (01) :45-58
[4]   Characterization of acid-sensitive ion channels in freshly isolated rat brain neurons [J].
Bolshakov, KV ;
Essin, KV ;
Buldakova, SL ;
Dorofeeva, NA ;
Skatchkov, SN ;
Eaton, MJ ;
Tikhonov, DB ;
Magazanik, LG .
NEUROSCIENCE, 2002, 110 (04) :723-730
[5]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[6]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[7]   Regulation and modulation of pH in the brain [J].
Chesler, M .
PHYSIOLOGICAL REVIEWS, 2003, 83 (04) :1183-1221
[8]   MODULATION OF PH BY NEURONAL-ACTIVITY [J].
CHESLER, M ;
KAILA, K .
TRENDS IN NEUROSCIENCES, 1992, 15 (10) :396-402
[9]   Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system [J].
de la Rosa, DA ;
Krueger, SR ;
Kolar, A ;
Shao, D ;
Fitzsimonds, RM ;
Canessa, CM .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 546 (01) :77-87
[10]   Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors [J].
DeVries, SH .
NEURON, 2001, 32 (06) :1107-1117