Influence of a stellar cusp on the dynamics of young stellar discs and the origin of the S-stars in the Galactic Centre

被引:40
作者
Loeckmann, U. [1 ]
Baumgardt, H. [1 ]
Kroupa, P. [1 ]
机构
[1] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany
关键词
black hole physics; stellar dynamics; methods: N-body simulations; Galaxy: centre; MASSIVE BLACK-HOLE; SGR-A-ASTERISK; CENTRAL PARSEC; RESONANT RELAXATION; HYPERVELOCITY STARS; GALAXY; ACCRETION; EVOLUTION; CLUSTER; DISKS;
D O I
10.1111/j.1365-2966.2009.15157.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be one to two orders of magnitude more massive than the disc(s). By means of N-body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars. Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 48 条
[1]   Constraints on the stellar mass function from stellar dynamics at the Galactic center [J].
Alexander, Richard D. ;
Begelman, Mitchell C. ;
Armitage, Philip J. .
ASTROPHYSICAL JOURNAL, 2007, 654 (02) :907-914
[2]   Stellar processes near the massive black hole in the Galactic center [J].
Alexander, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 419 (2-3) :65-142
[3]   STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE [J].
Alexander, Tal ;
Hopman, Clovis .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1861-1869
[4]   Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies [J].
Amaro-Seoane, P ;
Freitag, M ;
Spurzem, R .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 352 (02) :655-672
[5]   Intermediate and extreme mass-ratio inspirals - astrophysics, science applications and detection using LISA [J].
Amaro-Seoane, Pau ;
Gair, Jonathan R. ;
Freitag, Marc ;
Miller, M. Coleman ;
Mandel, Ilya ;
Cutler, Curt J. ;
Babak, Stanislav .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (17) :R113-R169
[6]   STAR DISTRIBUTION AROUND A MASSIVE BLACK-HOLE IN A GLOBULAR CLUSTER [J].
BAHCALL, JN ;
WOLF, RA .
ASTROPHYSICAL JOURNAL, 1976, 209 (01) :214-232
[7]   EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER [J].
Bartko, H. ;
Martins, F. ;
Fritz, T. K. ;
Genzel, R. ;
Levin, Y. ;
Perets, H. B. ;
Paumard, T. ;
Nayakshin, S. ;
Gerhard, O. ;
Alexander, T. ;
Dodds-Eden, K. ;
Eisenhauer, F. ;
Gillessen, S. ;
Mascetti, L. ;
Ott, T. ;
Perrin, G. ;
Pfuhl, O. ;
Reid, M. J. ;
Rouan, D. ;
Sternberg, A. ;
Trippe, S. .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1741-1763
[8]   Massive black holes in star clusters. II. Realistic cluster models [J].
Baumgardt, H ;
Makino, J ;
Ebisuzaki, T .
ASTROPHYSICAL JOURNAL, 2004, 613 (02) :1143-1156
[9]   Massive black holes in star clusters. I. Equal-mass clusters [J].
Baumgardt, H ;
Makino, J ;
Ebisuzaki, T .
ASTROPHYSICAL JOURNAL, 2004, 613 (02) :1133-1142
[10]  
Blanchet L, 2006, LIVING REV RELATIV, V9, DOI [10.12942/lrr-2006-4, 10.12942/lrr-2002-3]