New technical developments in multislice CT - Part 1: Approaching isotropic resolution with sub-millimeter 16-slice scanning

被引:80
作者
Flohr, T [1 ]
Stierstorfer, K [1 ]
Bruder, H [1 ]
Simon, J [1 ]
Schaller, S [1 ]
机构
[1] Siemens Med Solut, Computed Tomog, Abt CTCCF, D-91301 Forchheim, Germany
来源
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN | 2002年 / 174卷 / 07期
关键词
CT; multislice-CT; Cone-Beam-CT; isotropic resolution;
D O I
10.1055/s-2002-32692
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The introduction of multislice CT was a breakthrough with regard to increased scan speed, improved axial resolution and better utilization of the tube output. The new generation of multislice CT scanners offering simultaneous acquisition of up to 16 sub-millimeter slices represents an important leap on the way towards true isotropic scanning. We present an evaluation of a state-of-the-art 16-slice CT system (SOMATOM Sensation 16, Siemens AG, Forchheim, Germany). After an introduction to the detector design we discuss dose utilization and finally elaborate on multislice spiral scanning with 16 slices. Due to the increased number of slices dose utilization is improved compared to current 4-slice CT scanners, and sub-millimeter collimation needs no longer be restricted to special applications. For CT systems with 8 or more slices, the cone-beam geometry causes severe artifacts if not corrected for by a so-called cone-correction, which thus becomes mandatory in this case. With the Adaptive Multiple Plane Reconstruction AMPR, cone beam artifacts are effectively suppressed, while the benefits of Adaptive Axial Interpolation are maintained: free selection of the spiral pitch according to the clinical needs of an examination, slice width independent of the pitch, full dose utilization at all pitch values. Clinical practice will have to demonstrate the application spectrum that is opened with the new generation of multislice CT systems.
引用
收藏
页码:839 / 845
页数:7
相关论文
共 17 条
[1]  
Bruder H, 2000, IEEE T MED IMAGING, V19, P873, DOI 10.1109/42.887836
[2]   PRACTICAL CONE-BEAM ALGORITHM [J].
FELDKAMP, LA ;
DAVIS, LC ;
KRESS, JW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06) :612-619
[3]  
FLOHR T, SPRINGER MED RADIOLO
[4]  
FLOHR T, 2001, 57 SCI ASS ANN M RSN, P543
[5]   Four multidetector-row helical CT: Image quality and volume coverage speed [J].
Hu, H ;
He, HD ;
Foley, WD ;
Fox, SH .
RADIOLOGY, 2000, 215 (01) :55-62
[6]   Multi-slice helical CT: Scan and reconstruction [J].
Hu, H .
MEDICAL PHYSICS, 1999, 26 (01) :5-18
[7]   Advanced single-slice rebinning in cone-beam spiral CT [J].
Kachelriess, M ;
Schaller, S ;
Kalender, WA .
MEDICAL PHYSICS, 2000, 27 (04) :754-772
[8]   Subsecond multi-slice computed tomography: basics and applications [J].
Klingenbeck-Regn, K ;
Schaller, S ;
Flohr, T ;
Ohnesorge, B ;
Kopp, AF ;
Baum, U .
EUROPEAN JOURNAL OF RADIOLOGY, 1999, 31 (02) :110-124
[9]   Cone-beam filtered-backprojection algorithm for truncated helical data [J].
Kudo, H ;
Noo, F ;
Defrise, M .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (10) :2885-2909
[10]  
LARSON GL, 1998, Patent No. 9844847