Space-variant Fourier analysis: The exponential chirp transform

被引:22
作者
Bonmassar, G [1 ]
Schwartz, EL [1 ]
机构
[1] BOSTON UNIV, DEPT COGNIT & NEURAL SYST, BOSTON, MA 02146 USA
关键词
logpolar mapping; rotation scale and shift invariance; attention; space-variant image processing; Fourier analysis; nonuniform sampling; real-time imaging; warped template matching;
D O I
10.1109/34.625108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Space-variant, or foveating, vision architectures are of importance in both machine and biological vision. In this paper, we focus on a particular space-variant map, the log-polar map, which approximates the primate visual map, and which has been applied in machine vision by a number of investigators during the past two decades. Associated with the log-polar map, we define a new linear integral transform, which we call the exponential chirp transform. This transform provides frequency domain image processing for space-variant image formats, while preserving the major aspects of the shift-invariant properties of the usual Fourier transform. We then show that a log-polar coordinate transform in frequency (similar to the Mellin-Transform) provides a fast exponential chirp transform. This provides size and rotation, in addition to shift, invariant properties in the transformed space. Finally, we demonstrate the use of the fast exponential chirp algorithm on a database of images in a template matching task, and also demonstrate its uses for spatial filtering. Given the general lack of algorithms in space-variant image processing, we expect that the fast exponential chirp transform will provide a fundamental tool for applications in this area.
引用
收藏
页码:1080 / 1089
页数:10
相关论文
共 50 条
[1]   ROTATION AND SCALE-INVARIANCE WITH POLAR AND LOG-POLAR COORDINATE TRANSFORMATIONS [J].
ASSELIN, D ;
ARSENAULT, HH .
OPTICS COMMUNICATIONS, 1994, 104 (4-6) :391-404
[2]   ALIAS-FREE RANDOMLY TIMED SAMPLING OF STOCHASTIC PROCESSES [J].
BEUTLER, FJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (02) :147-+
[3]  
BONMASSAR G, 1997, THESIS BOSTON U
[4]  
BONMASSAR G, 1994, P INT C PATT REC ICP
[5]  
BONMASSAR G, 1996, P COMPUTER VISION PA, P229
[6]   A THRESHOLD LOGIC NETWORK FOR SHAPE INVARIANCE [J].
BROUSIL, JK ;
SMITH, DR .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1967, EC16 (06) :818-+
[7]   A LEAST UPPER BOUND FOR ALIASING ERROR [J].
BROWN, JL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (06) :754-&
[8]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[9]   POSITION, ROTATION, AND SCALE INVARIANT OPTICAL CORRELATION [J].
CASASENT, D ;
PSALTIS, D .
APPLIED OPTICS, 1976, 15 (07) :1795-1799
[10]   SIZE AND POSITION INVARIANCE IN VISUAL-SYSTEM [J].
CAVANAGH, P .
PERCEPTION, 1978, 7 (02) :167-177