Perturbation theories of a discrete, integrable nonlinear Schrodinger equation

被引:60
作者
Cai, D [1 ]
Bishop, AR [1 ]
GronbechJensen, N [1 ]
机构
[1] LOS ALAMOS NATL LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 04期
关键词
D O I
10.1103/PhysRevE.53.4131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We rederive the discrete inverse-scattering transform (IST) perturbation results for the time evolution of the parameters of a discrete nonlinear Schrodinger soliton from certain mathematical identities that can be viewed as conserved quantities in the discrete, integrable nonlinear Schrodinger equation in (1+1) dimension. This method significantly simplifies the derivation of the IST perturbation results. We also present a specific example for which the adiabatic IST perturbation results and the collective coordinate method results exactly coincide. This is achieved by establishing a correct Lagrangian formalism for soliton parameters via transforming dynamical variables that obey a deformed Poisson structure to ones that possess a canonical Poisson structure.
引用
收藏
页码:4131 / 4136
页数:6
相关论文
共 8 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   LOCALIZED STATES IN DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :591-595
[3]  
CHRISTIANSEN PL, 1993, PHYSICA D, V68
[4]   MOVING LOCALIZED MODES IN NONLINEAR LATTICES [J].
CLAUDE, C ;
KIVSHAR, YS ;
KLUTH, O ;
SPATSCHEK, KH .
PHYSICAL REVIEW B, 1993, 47 (21) :14228-14232
[5]  
Faddeev L. D, 1987, HAMILTONIAN METHODS
[6]   QUANTUM DEFORMATIONS OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
SALERNO, M .
PHYSICAL REVIEW A, 1992, 46 (11) :6856-6859
[7]   THEORY OF STATIONARY ANHARMONIC LOCALIZED MODES IN SOLIDS [J].
TAKENO, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (08) :2821-2834
[8]  
VAKHNENKO AA, 1986, TEOR MAT FIZ, V68, P350