Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency

被引:777
作者
Cutler, SR
Ehrhardt, DW
Griffitts, JS
Somerville, CR
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.97.7.3718
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a general approach for identifying components of subcellular structures in a multicellular organism by exploiting the ability to generate thousands of independent transformants in Arabidopsis thaliana. A library of Arabidopsis cDNAs was constructed so that the cDNAs were inserted at the 3' end of the green fluorescent protein (GFP) coding sequence. The library was introduced en masse into Arabidopsis by Agrobacterium-mediated transformation. Fluorescence imaging of 5,700 transgenic plants indicated that approximate to 2% of lines expressed a fusion protein with a different subcellular distribution than that of soluble GFP, About half of the markers identified were targeted to peroxisomes or other subcellular destinations by non-native coding sequence (i.e., out-of-frame cDNAs). This observation suggests that some targeting signals are of sufficiently law information content that they can be generated frequently by chance, The potential of the approach for identifying markers with unique dynamic processes is demonstrated by the identification of a GFP fusion protein that displays a cell-cycle regulated change in subcellular distribution. Our results indicate that screening GFP-fusion protein libraries is a useful approach for identifying and visualizing components of subcellular structures and their associated dynamics in higher plant cells.
引用
收藏
页码:3718 / 3723
页数:6
相关论文
共 20 条
[1]  
Boudonck K, 1998, J CELL SCI, V111, P3687
[2]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[3]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[4]   AQUAPORINS - WATER CHANNEL PROTEINS OF PLANT AND ANIMAL-CELLS [J].
CHRISPEELS, MJ ;
AGRE, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (10) :421-425
[5]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[6]   UNDERSTANDING, IMPROVING AND USING GREEN FLUORESCENT PROTEINS [J].
CUBITT, AB ;
HEIM, R ;
ADAMS, SR ;
BOYD, AE ;
GROSS, LA ;
TSIEN, RY .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :448-455
[7]   Movement of yeast cortical actin cytoskeleton visualized in vivo [J].
Doyle, T ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3886-3891
[8]   Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase [J].
Fransen, M ;
Van Veldhoven, PP ;
Subramani, S .
BIOCHEMICAL JOURNAL, 1999, 340 :561-568
[9]   Codon usage limitation in the expression of HIV-1 envelope glycoprotein [J].
Haas, J ;
Park, EC ;
Seed, B .
CURRENT BIOLOGY, 1996, 6 (03) :315-324
[10]   Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly [J].
Haseloff, J ;
Siemering, KR ;
Prasher, DC ;
Hodge, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2122-2127