The general coalescent with asynchronous mergers of ancestral lines

被引:248
作者
Sagitov, S [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
关键词
coalescent; infinitely divisible distribution; de Finetti's theorem; reduced branching process;
D O I
10.1239/jap/1032374759
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Take a sample of individuals in the fixed-size population model with exchangeable family sizes. Follow the ancestral lines for the sampled individuals backwards in time to observe the ancestral process. We describe a class of asymptotic structures for the ancestral process via a convergence criterion. One of the basic conditions of the criterion prevents simultaneous mergers of ancestral lines. Another key condition implies that the marginal distribution of the family size is attracted by an infinitely divisible distribution. If the latter is normal the coalescent allows only for pairwise mergers (Kingman's coalescent). Otherwise multiple mergers happen with positive probability.
引用
收藏
页码:1116 / 1125
页数:10
相关论文
共 9 条
[1]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[2]   STRUCTURE OF REDUCED CRITICAL GALTON-WATSON PROCESSES [J].
FLEISCHMANN, K ;
SIEGMUNDSCHULTZE, R .
MATHEMATISCHE NACHRICHTEN, 1977, 79 :233-241
[3]  
Kingman J.F., 1982, J. Appl. Probab., P27, DOI [DOI 10.2307/3213548, 10.2307/3213548]
[4]  
Kingman J.F., 1982, Stochastic Process. Appl., V13, P235, DOI [DOI 10.1016/0304-4149(82)90011-4, 10.1016/0304-4149(82)90011-4]
[5]  
Kingman J.F. C., 1982, EXCHANGEABILITY PROB, P97
[6]   Robustness results for the coalescent [J].
Mohle, M .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (02) :438-447
[7]   A BRANCHING PROCESS WITH MEAN ONE AND POSSIBLY INFINITE VARIANCE [J].
SLACK, RS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 9 (02) :139-&
[8]   REDUCED BRANCHING-PROCESSES [J].
YAKYMIV, AL .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1980, 25 (03) :584-588
[9]  
Zolotarev V. M., 1957, Theory Prob. Appl, V2, P256