Two novel cosegregating mutations in tRNAMet and COX III, in a patient with exercise intolerance and autoimmune polyendocrinopathy

被引:17
作者
Bortot, B. [1 ,3 ]
Barbi, E. [2 ]
Biffi, S. [1 ,5 ]
Angelini, C. [4 ]
Faleschini, E. [2 ]
Severini, G. M. [1 ,3 ]
Carrozzi, M. [1 ]
机构
[1] IRCCS, Inst Child Hlth, Child Neurol & Psychiat Unit, I-34137 Trieste, Italy
[2] Univ Trieste, Inst Child Hlth, IRCCS, Dept Pediat, I-34137 Trieste, Italy
[3] IRCCS, Inst Child Hlth, Med Genet Unit, I-34137 Trieste, Italy
[4] Univ Padua, Dept Neurosci, Padua, Italy
[5] CBM Scrl, Opt Imaging Lab, Trieste, Italy
关键词
Met-tRNA and Cox III cosegregating mutations; Exercise intolerance; Autoimmune polyendocrinopathy; CYTOCHROME-C-OXIDASE; MITOCHONDRIAL-DNA MUTATIONS; LACTIC-ACIDOSIS; CHINESE FAMILY; RNA GENE; A1555G MUTATION; HEARING-LOSS; MYOPATHY; DEFICIENCY; MTDNA;
D O I
10.1016/j.mito.2009.01.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We report a 12-year-old patient with growth retardation, exercise intolerance, lactic acidosis (increasing after exercise) and autoimmune polyendocrinopathy type 2. Muscle biopsy shows abundant COX-negative fibers, subsarcolemmal mitochondrial aggregates and markedly reduced activities of all respiratory chain complexes. Genetic analysis identified two new cosegregating mutations in Met-tRNA (m.4415A > G) and Cox III (m.9922A > C), located in highly conserved regions of MtDNA. Both the mutations are heteroplasmics in multiple patients' tissues. Single-muscle fiber analysis showed significantly higher levels of both the mutations in COX-negative than in normal fibers. in addition, a possible link between the mitochondrial dysfunction and the autoimmune disease is suggested. (C) 2009 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 60 条
[1]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[2]   Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].
Andrews, RM ;
Kubacka, I ;
Chinnery, PF ;
Lightowlers, RN ;
Turnbull, DM ;
Howell, N .
NATURE GENETICS, 1999, 23 (02) :147-147
[3]  
[Anonymous], HUMAN MITOCHONDRIAL
[4]   A double mutation (A8296G and G8363A) in the mitochondrial DNA tRNALys gene associated with myoclonus epilepsy with ragged-red fibers [J].
Arenas, J ;
Campos, Y ;
Bornstein, B ;
Ribacoba, R ;
Martín, MA ;
Rubio, JC ;
Santorelli, FM ;
Zeviani, M ;
DiMauro, S ;
Garesse, R .
NEUROLOGY, 1999, 52 (02) :377-382
[5]   Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: A single-step approach [J].
Bai, RK ;
Wong, LJC .
CLINICAL CHEMISTRY, 2004, 50 (06) :996-1001
[6]   Intracellular mitochondrial triplasmy in a patient with two heteroplasmic base changes [J].
Bidooki, SK ;
Johnson, MA ;
ChrzanowskaLightowlers, Z ;
Bindoff, LA ;
Lightowlers, RN .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 60 (06) :1430-1438
[7]   Retrospective, multicentric study of 180 children with cytochrome c oxidase deficiency [J].
Böhm, M ;
Pronicka, E ;
Karczmarewicz, E ;
Pronicki, M ;
Piekutowska-Abramczuk, D ;
Sykut-Cegielska, J ;
Mierzewska, H ;
Hansikova, H ;
Vesela, K ;
Tesarova, M ;
Houstkova, H ;
Houstek, J ;
Zeman, J .
PEDIATRIC RESEARCH, 2006, 59 (01) :21-26
[8]   NEW MORPHOLOGICAL APPROACHES TO THE STUDY OF MITOCHONDRIAL ENCEPHALOMYOPATHIES [J].
BONILLA, E ;
SCIACCO, M ;
TANJI, K ;
SPARACO, M ;
PETRUZZELLA, V ;
MORAES, CT .
BRAIN PATHOLOGY, 1992, 2 (02) :113-119
[9]   PCR analysis in archival postmortem tissues [J].
Bonin, S ;
Petrera, F ;
Niccolini, B ;
Stanta, G .
JOURNAL OF CLINICAL PATHOLOGY-MOLECULAR PATHOLOGY, 2003, 56 (03) :184-186
[10]  
Brandon MC, 2005, NUCLEIC ACIDS RES, V33, pD611