Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions

被引:77
作者
Mainen, ZF
Carnevale, NT
Zador, AM
Claiborne, BJ
Brown, TH
机构
[1] YALE UNIV, DEPT PSYCHOL, NEW HAVEN, CT 06520 USA
[2] YALE UNIV, CTR NEUROSCI, NEW HAVEN, CT 06520 USA
[3] YALE UNIV, DEPT CELLULAR & MOL PHYSIOL, NEW HAVEN, CT 06520 USA
[4] UNIV TEXAS, DIV LIFE SCI, SAN ANTONIO, TX 78249 USA
关键词
D O I
10.1152/jn.1996.76.3.1904
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The spread of electrical signals in pyramidal neurons from the CA1 field of rat hippocampus was investigated through multicompartmental modeling based on three-dimensional morphometric reconstructions of four of these cells. These models were used to dissect the electrotonic architecture of these neurons, and to evaluate the equivalent cylinder approach that this laboratory and others have previously applied to them. Robustness of results was verified by the use of wide ranges of values of specific membrane resistance (R(m)) and cytoplasmic resistivity. 2. The anatomy exhibited extreme departures from a key assumption of the equivalent cylinder model, the so-called ''3/2 power law.'' 3. The compartmental models showed that the frequency distribution of steady-state electrotonic distances between the soma and the dendritic terminations was multimodal, with a large range and a sizeable coefficient of variation. This violated another central assumption of the equivalent cylinder model, namely, that all terminations are electrotonically equidistant from the soma. This finding, which was observed both for ''centrifugal'' (away from the soma) and ''centripetal'' (toward the soma) spread of electrical signals, indicates that the concept of an equivalent electrotonic length for the whole dendritic tree is not appropriate for these neurons. 4. The multiple peaks in the electrotonic distance distributions, whether for centrifugal or centripetal voltage transfer, were clearly related to the laminar organization of synaptic afferents in the CA1 region. 5. The results in the three preceding paragraphs reveal how little of the electrotonic architecture of these neurons is captured by a simple equivalent cylinder model. The multicompartmental model is more appropriate for exploring synaptic signaling and transient events in CA1 pyramidal neurons. 6. There was significant attenuation of synaptic potential, current, and charge as they spread from the dendritic tree to the soma. Charge suffered the least and voltage suffered the most attenuation. Attenuation depended weakly on R(m) and strongly on synaptic location. Delay of time to peak was more distorted for voltage than for current and was more affected by R(m). 7. Adequate space clamp is not possible for most of the synapses on these cells. Application of a somatic voltage clamp had no significant effect on voltage transients in the subsynaptic membrane. 8. The possible existence of steep voltage gradients within the dendritic tree is consistent with the idea that there can be some degree of local processing and that different regions of the neuron may function semiautonomously. These spatial gradients are potentially relevant to synaptic plasticity in the hippocampus, and they also suggest caution in interpreting some neurophysiological results.
引用
收藏
页码:1904 / 1923
页数:20
相关论文
共 96 条
  • [1] AMARAL DG, 1990, PROG BRAIN RES, V83, P1
  • [2] [Anonymous], METHODS NEURONAL MOD
  • [3] [Anonymous], 1992, SINGLE NEURON COMPUT
  • [4] DIRECT ANALYSIS OF CHEMICAL RELAXATION SIGNALS BY A METHOD BASED ON THE COMBINATION OF LAPLACE TRANSFORM AND PADE APPROXIMANTS
    AUBARD, J
    LEVOIR, P
    DENIS, A
    CLAVERIE, P
    [J]. COMPUTERS & CHEMISTRY, 1987, 11 (03): : 163 - 178
  • [5] ASSOCIATIVE LONG-TERM POTENTIATION IN HIPPOCAMPAL SLICES
    BARRIONUEVO, G
    BROWN, TH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (23): : 7347 - 7351
  • [6] CONDUCTANCE MECHANISM RESPONSIBLE FOR LONG-TERM POTENTIATION IN MONO-SYNAPTIC AND ISOLATED EXCITATORY SYNAPTIC INPUTS TO HIPPOCAMPUS
    BARRIONUEVO, G
    KELSO, SR
    JOHNSTON, D
    BROWN, TH
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1986, 55 (03) : 540 - 550
  • [7] PRESYNAPTIC MECHANISM FOR LONG-TERM POTENTIATION IN THE HIPPOCAMPUS
    BEKKERS, JM
    STEVENS, CF
    [J]. NATURE, 1990, 346 (6286) : 724 - 729
  • [8] BROWN T H, 1988, P201
  • [9] PASSIVE ELECTRICAL CONSTANTS IN 3 CLASSES OF HIPPOCAMPAL-NEURONS
    BROWN, TH
    FRICKE, RA
    PERKEL, DH
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1981, 46 (04) : 812 - 827
  • [10] VOLTAGE-CLAMP ANALYSIS OF MOSSY FIBER SYNAPTIC INPUT TO HIPPOCAMPAL-NEURONS
    BROWN, TH
    JOHNSTON, D
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1983, 50 (02) : 487 - 507